

ASN1C Mapping
of ASN.1 Syntax to
XML Schema

Objective Systems, Inc., Last Update: July 2005

Table of Contents

Abstract ... 3

General Conventions .. 4

Mapping of Top-Level Constructs .. 4

Mapping of ASN.1 Types ... 4
BOOLEAN .. 4
INTEGER .. 5
BIT STRING ... 6
OCTET STRING... 8
Character String Types .. 8
Time String Types ... 9
ENUMERATED.. 10
NULL... 11
OBJECT IDENTIFIER.. 11
RELATIVE-OID ... 12
REAL... 12
SEQUENCE .. 12
SET .. 14
SEQUENCE OF / SET OF.. 15
CHOICE .. 18
Open Type ... 18
Tagged Types .. 19
EXTERNAL and EmbeddedPDV Types .. 20

Mapping of ASN.1 Information Objects .. 21
CLASS... 21
Information Object and Information Object Set.. 22
Use of Mappings in Type Definitions ... 23

References ... 26

Abstract

An effort is currently underway within the ITU-T to map World-Wide Web Consortium (W3C) XML
Schema Definitions Language (XSD) to Abstract Syntax Notation 1 (ASN.1). But a parallel effort to
provide a mapping in the other direction – from ASN.1 to XSD – is on hold. Given the currently popularity
of XSD for defining new standards, it would seem reasonable that ASN.1 to XSD conversion would be of
interest to the ASN.1 community.

This paper presents such a mapping. It uses as a basis the T1 Standard’s Committee Draft Standard – tML
Guidelines for mapping ASN.1 syntax and modules to XML Schemas.1

General Conventions

In this document, sections of ASN.1 syntax and XML Schema definitions are shown in plain text
(courier font). Within these sections, symbols shown in italics indicate placeholders for items to be
substituted. For example, in the statement TypeName ::= A, TypeName would be replaced with a valid
ASN.1 name for a type.

This paper covers the conversion of ASN.1 module headers and types.

Mapping of Top-Level Constructs

An ASN.1 module name is mapped to an XML schema namespace. ASN.1 IMPORT statements are
mapped to XSD import statements. The ASN.1 EXPORT statement does not have a corresponding
construct in XSD.

The general form of the XSD namespace and import statements would be as follows:

<?xml version="1.0"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="URL/ModuleName"

 <!—- following line would be added for imported module namespace -->
 xmlns:ImportedModuleName="importURL/ImportedModuleName"
 elementFormDefault="qualified">

 <xsd:import namespace="importURL/ImportedModuleName"
 schemaLocation="ImportedModuleName.xsd"/>

In this definition, the items in italics would be replaced with text from the ASN.1 specification being
converted or a configuration file. The ModuleName and ImportedModuleName items would come from the
ASN.1 specification. The URL and importURL items would be configuration parameters.

Mapping of ASN.1 Types

Each ASN.1 type is mapped to a corresponding XSD type. The following sections describe the mappings
for each of the ASN.1 built-in types.

BOOLEAN

The ASN.1 BOOLEAN type is mapped to the XSD boolean built-in type.

 ASN.1 production:

 TypeName ::= BOOLEAN

 Generated XSD code:

<xsd:simpleType name="TypeName">
 <xsd:restriction base="xsd:boolean"/>
</xsd:simpleType>

INTEGER

The ASN.1 INTEGER type is converted into one of several XSD built-in types depending on value range
constraints on the integer type definition.

The default conversion if the INTEGER value contains no constraints is to the XSD integer type:

 ASN.1 production:

 TypeName ::= INTEGER

 Generated XSD code:

<xsd:simpleType name="TypeName">
 <xsd:restriction base="xsd:integer"/>
</xsd:simpleType>

If the integer has a value range constraint that allows a more restrictive XSD type to be used, then that type
will be used. For example, if a range of 0 to 255 (inclusive) is specified, an XSD unsignedByte would be
used because it maps exactly to this range. The following table shows the range values for each of the
INTEGER type mappings:

Lower Bound Upper Bound XSD Type
-128 127 byte
0 255 unsignedByte
-32768 32767 short
0 65535 unsignedShort
-2147483648 2147483647 integer
0 4294967295 unsignedInt
-9223372036854775808 9223372036854775807 long
0 18446744073709551615 unsignedLong

Ranges beyond “long” or “unsignedLong” will cause the integer value to be treated as a “big integer”. This
will map to an xsd:string type. An integer can also be specified to be a big integer using the ASN1C
<isBigInteger/> configuration file setting.

If constraints are present on the INTEGER type that are not exactly equal to the lower and upper bounds
specified above, then xsd:minInclusive and xsd:maxInclusive facets will be added to the XSD type
mapping. For example, the mapping of “I ::= INTEGER (0..10)” would be done as follows:

1. The most restrictive type would first be chosen based on the constraints. In this case, xsd:byte
would be used because it appears first on the list above.

2. Then the xsd:minInclusive and xsd:maxInclusive facets would be added to further restrict the type.

This would result in the following mapping:

<xsd:simpleType name=”I”>
 <xsd:restriction base=”xsd:byte”>
 <xsd:minInclusive value=”0”>
 <xsd:maxInclusive value=”10”>
 </xsd:restriction>
</xsd:simpleType>

BIT STRING

There is no built-in XSD type that corresponds to the ASN.1 BIT STRING type. For this reason, a custom
type was created in the Objective Systems XSD run-time library (asn1.xsd) to model this type. This type is
asn1:BitString and has the following definition:

 <xsd:simpleType name="BitString">
 <xsd:restriction base="xsd:token">
 <xsd:pattern value="[0-1]{0,}"/>
 </xsd:restriction>
 </xsd:simpleType>

The ASN.1 BIT STRING type is converted into a reference to this custom type as follows:

 ASN.1 production:

 TypeName ::= BIT STRING

 Generated XSD code:

<xsd:simpleType name="TypeName">
 <xsd:restriction base="asn1:BitString"/>
</xsd:simpleType>

Sized BIT STRING

The ASN.1 BIT STRING type may contain a size constraint. This is converted into minLength and
maxLength facets in the generated XSD definition:

 ASN.1 production:

 TypeName ::= BIT STRING (SIZE (lower..upper))

 Generated XSD code:

<xsd:simpleType name="TypeName">
 <xsd:restriction base="asn1:BitString">
 <xsd:minLength value=”lower”/>
 <xsd:maxLength value=”upper”/>
 </xsd:restriction>
</xsd:simpleType>

BIT STRING with Named Bits

A bit string with named bits is handled differently than a normal bit string. This is because the primary use
of named bits it to define a bit map of selected bit items. For this reason, a list of enumerated items is used
for the type. This allows the names of the bits to be specified in an XML instance of the type. The type
also contains application information in the form of an non-native attribute that allows an application to
map the items specified in a list to binary bits in a bitmap.

The formal mapping of an ASN.1 BIT STRING with named bits to XSD is as follows:

 ASN.1 production:

 TypeName ::= BIT STRING { b1(n1), b2(n2) }

 Generated XSD code:

 <xsd:simpleType name="TypeName">
 <xsd:union memberTypes="asn1:BitString">
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value="b1" asn1:bitno="n1"/>
 <xsd:enumeration value="b2" asn1:bitno="n2"/>
 ...
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:list>
 </xsd:union>
 </xsd:simpleType>

The previous version of this tool also generates the annotation code for this definition. This can also be
generated with current version using the -appinfo option.

 Generated XSD code with annotation:

 <xsd:simpleType name="TypeName">
 <xsd:annotation>
 <xsd:appinfo>
 <asn1:NamedBitInfo>
 <asn1:NamedBit name="b1" bitNumber="n1">
 <asn1:NamedBit name="b2" bitNumber="n2">
 ...
 </asn1:NamedBitInfo>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:union memberTypes="asn1:BitString">
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value="b1"/>
 <xsd:enumeration value="b2"/>
 ...
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:list>
 </xsd:union>

 </xsd:simpleType>

The appinfo section will not be needed if the bits are sequentially numbered starting at zero. An
application that uses the mapping would be able to calculate the bit numbers based on their position in the
document.

Example

The following ASN.1 BIT STRING type:

 ColorSet ::= BIT STRING (blue(1), green(3), red(5))

maps to the following XSD type:

 <xsd:simpleType name="ColorSet">
 <xsd:union memberTypes="asn1:BitString">
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value="blue" asn1:bitno="1"/>
 <xsd:enumeration value="green" asn1:bitno="3"/>
 <xsd:enumeration value="red" asn1:bitno="5"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:list>
 </xsd:union>
 </xsd:simpleType>

OCTET STRING

The ASN.1 OCTET STRING type is converted into the XSD hexBinary type.

 ASN.1 production:

TypeName ::= OCTET STRING

 Generated XSD code:

<xsd:simpleType name="TypeName">
 <xsd:restriction base="xsd:hexBinary"/>
</xsd:simpleType>

Sized OCTET STRING

The ASN.1 OCTET STRING type may contain a size constraint. This is converted into minLength and
maxLength facets in the generated XSD definition:

 ASN.1 production:

 TypeName ::= OCTET STRING (SIZE (lower..upper))

 Generated XSD code:

<xsd:simpleType name="TypeName">
 <xsd:restriction base="hexBinary">
 <xsd:minLength value=”lower”/>
 <xsd:maxLength value=”upper”/>
 </xsd:restriction>
</xsd:simpleType>

Character String Types

All ASN.1 character string useful types (IA5String, VisibleString, etc.) are mapped to the XSD string type.

 ASN.1 production:

 TypeName ::= ASN1CharStringType

in this definition, ASN1CharStringType would be replaced with one of the ASN.1 Character String
types such as VisibleString.

 Generated XSD code:

<xsd:simpleType name="TypeName">
 <xsd:restriction base="string"/>
</xsd:simpleType>

ASN.1 character string types may contain a size constraint. This is converted into minLength and
maxLength facets in the generated XSD definition:

 ASN.1 production:

 TypeName ::= ASN1CharStringType (SIZE (lower..upper))

 Generated XSD code:

<xsd:simpleType name="TypeName">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value=”lower”/>
 <xsd:maxLength value=”upper”/>
 </xsd:restriction>
</xsd:simpleType>

ASN.1 character string types may also contain permitted alphabet or pattern constraints. These are
converted into pattern facets in the generated XSD definition:

 ASN.1 production:

 TypeName ::= ASN1CharStringType (FROM (charSet))

 or

 TypeName ::= ASN1CharStringType (PATTERN (pattern))

 Generated XSD code:

<xsd:simpleType name="TypeName">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value=”pattern”/>
 </xsd:restriction>
</xsd:simpleType>

In this case, the permitted alphabet character set (charSet) is converted into a corresponding pattern for use
in the generated XML schema definition.

Time String Types

The ASN.1 GeneralizedTime and UTCTime types are mapped to the XSD dateTime type.

 ASN.1 production:

 TypeName ::= ASN1TimeStringType

in this definition, ASN1TimeStringType would be replaced with either GeneralizedTime or UTCTime.

 Generated XSD code:

<xsd:simpleType name="TypeName">
 <xsd:restriction base="dateTime"/>
</xsd:simpleType>

ENUMERATED

The ASN.1 ENUMERATED type is converted into an XSD token type with enumeration items. The
enumeration items correspond to the enumerated identifiers in the type. If the enumerated items contain
numbers (i.e do not follow the standards sequence), then an <appinfo> annotation is added to the type to
allow an application to map the enumerated identifiers to numbers. If <appinfo> is not present, then an
application can safely assume that the enumerated identifiers are in sequential order starting at zero.

 ASN.1 production:

TypeName ::= ENUMERATED (id1(val1), id2(val2), ...)

 Generated XSD code:

 <xsd:simpleType name="TypeName">
 <xsd:restriction base="xsd:token">
 <xsd:enumeration name=”id1” asn1:value=”val1”>
 <xsd:enumeration name=”id2” asn1:value=”val2”>
 </xsd:restriction>
 </xsd:simpleType>

The previous version of this tool also generates the annotation code for this definition. This can also be
generated with current version using -appinfo option.

 Generated XSD code with annotation:

 <xsd:simpleType name="TypeName">
 <xsd:annotation>
 <xsd:appinfo>
 <asn1:EnumInfo>
 <asn1:EnumItem name=”id1” value=”val1”/>
 <asn1:EnumItem name=”id2” value=”val2”/>
 </asn1:EnumInfo>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:token">
 <xsd:enumeration name=”id1”>
 <xsd:enumeration name=”id2”>
 </xsd:restriction>
 </xsd:simpleType>

Example

The following ASN.1 enumerated type:

 Colors ::= ENUMERATED (blue(1), green(3), red(5))

maps to the following XSD type

 <xsd:simpleType name=”Colors”>
 <xsd:restriction base="xsd:token">
 <xsd:enumeration name=”blue” asn1:value=”1”>
 <xsd:enumeration name=”green” asn1:value=”3”>
 <xsd:enumeration name=”red” asn1:value=”5”>
 </xsd:restriction>
 </xsd:simpleType>

Note that if the identifiers in the enumerated type did not contain numbers (i.e. if the type was
‘ENUMERATED (blue, green, red)’), then the annotation would not be necessary on the type above.

NULL

There is no built-in XSD type that corresponds to the ASN.1 NULL type. For this reason, a custom type
was created in the Objective Systems XSD run-time library (asn1.xsd) to model this type. This type is
asn1:NULL and has the following definition:

 <complexType name=”NULL” final=”#all”/>

This is a non-extendable empty complex type.

OBJECT IDENTIFIER

There is no built-in XSD type that corresponds to the ASN.1 OBJECT IDENTIFIER type. For this reason,
a custom type was created in the Objective Systems XSD run-time library (asn1.xsd) to model this type.
This type is asn1:ObjectIdentifier and has the following definition:

 <xsd:simpleType name="ObjectIdentifier">
 <xsd:restriction base="xsd:token">
 <xsd:pattern value=
 “[0-2]((\.[1-3]?[0-9])(\.\d+)*)?”/>
 </xsd:restriction>
 </xsd:simpleType>

The pattern enforces the rule in the X.680 standard that the first arc value of an OID must be between 0 and
2, the second arc must be between 0 and 39, and the remaining arcs can be any number. The ASN.1
OBJECT IDENTIFIER type is converted into a reference to this custom type as follows:

 ASN.1 production:

 TypeName ::= OBJECT IDENTIFIER

 Generated XSD code:

<xsd:simpleType name="TypeName">

 <xsd:restriction base="asn1:ObjectIdentifier"/>
</xsd:simpleType>

RELATIVE-OID

There is no built-in XSD type that corresponds to the ASN.1 RELATIVE-OID type. For this reason, a
custom type was created in the Objective Systems XSD run-time library (asn1.xsd) to model this type.
This type is asn1:RelativeOID and has the following definition:

 <xsd:simpleType name="RelativeOID">
 <xsd:restriction base="xsd:token">
 <xsd:pattern value=”\d+(\.\d+)*”/>
 </xsd:restriction>
 </xsd:simpleType>

This is similar to the OBJECT IDENTIFIER type discussed in the previous section except in this case, the
patter in simpler. The arc numbers in a RELATIVE-OID are not restricted in any way, hence the simpler
pattern. The ASN.1 RELATIVE-OID type is converted into a reference to this custom type as follows:

 ASN.1 production:

 TypeName ::= RELATIVE-OID

 Generated XSD code:

<xsd:simpleType name="TypeName">
 <xsd:restriction base="asn1:RelativeOID"/>
</xsd:simpleType>

REAL

The ASN.1 REAL type is mapped to the XSD double built-in type.

 ASN.1 production:

 TypeName ::= REAL

 Generated XSD code:

<xsd:simpleType name="TypeName">
 <xsd:restriction base="xsd:double"/>
</xsd:simpleType>

SEQUENCE

An ASN.1 SEQUENCE is a constructed type consisting of a series of element definitions that must appear
in the specified order. This is very similar to the XSD sequence complex type and is therefore mapped to
this type.

The basic mapping is as follows:

 ASN.1 production:

TypeName ::= SEQUENCE {
 element1-name element1-type,
 element2-name element2-type,

...
 }

 Generated XSD code:

<xsd:complexType name="TypeName">
 <xsd:sequence>
 <xsd:element name="element1-name" type="element1-type"/>
 <xsd:element name="element2-name" type="element2-name"/>
 …
 </xsd:sequence>
</xsd:complexType>

OPTIONAL keyword

Elements within a sequence can be declared to be optional using the OPTIONAL keyword. This indicates
that the element is not required in the encoded message. XSD contains the minOccurs facet that can be
used to model this behavior. Setting minOccurs equal to zero is the equivalent to declaring an element to
be optional because this indicates the element can appear zero to one times in the definition.

For example, the following ASN.1 SEQUENCE type:

 OptInt ::= SEQUENCE {
 anInt INTEGER OPTIONAL
 }

will cause the following XSD complex type to be generated:

 <xsd:complexType name=”OptInt”>
 <xsd:sequence>
 <xsd:element name=”anInt” type=”xsd:integer” minOccurs=”0”/>
 </xsd:sequence>
 </xsd:complexType>

DEFAULT keyword

The DEFAULT keyword allows a default value to be specified for elements within the SEQUENCE. XSD
contains a default facet that can be used to map elements with this keyword.

For example, the following ASN.1 SEQUENCE type:

 DfltInt ::= SEQUENCE {
 anInt INTEGER DEFAULT 1
 }

will cause the following XSD complex type to be generated:

 <xsd:complexType name=”DfltInt”>
 <xsd:sequence>
 <xsd:element name=”anInt” type=”xsd:integer” default=”1”/>

 </xsd:sequence>
 </xsd:complexType>

Note that in XSD, default values can only be specified for simple (primitive) types. ASN.1 allows for the
specification of default values on complex (constructed) types as well. If an ASN.1 type is encountered
that contains a complex default value, the value is dropped in the conversion to XSD.

Extension Elements

If the SEQUENCE type is extensible (i.e., contains an ellipses marker …), a special element will be
inserted to allow unknown elements to be validated. This special element is as follows:

 <xsd:any namespace="##other" processContents="lax"/>

This element declaration allows any additional elements from other namespaces to exist in a message
instance without causing a validation or decoding error. Note the restriction that the element must be
defined in a different namespace. This is necessary because if the element existed in the same namespace
as other elements, the content model would be non-deterministic. The reason is because a validation
program would not be able to determine if the last element is a sequence was a defined element or an
extension element.

The extension element is marked with a non-native attribute description. For example:

DfltInt ::= SEQUENCE {
 anInt INTEGER,
 ...,
 extElm BOOLEAN
}

Generated XSD code:

 <xsd:complexType name="DfltInt">
 <xsd:sequence>
 <xsd:element name="anInt" type="xsd:integer"/>
 <xsd:element name="extElm" minOccurs="0" type="xsd:boolean"
 asn1:description="extension element"/>
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

Note: In the ASN.1 SEQUENCE or SET type, all extension elements are optional, whether marked that
way or not.

SET

An ASN.1 SET is a constructed type consisting of a series of element definitions that can appear in any
order. This is similar to the XSD all complex type and is therefore mapped to this type.

The basic mapping is as follows:

 ASN.1 production:

TypeName ::= SET {
 element1-name element1-type,

 element2-name element2-type,
...

 }

 Generated XSD code:

<xsd:complexType name="TypeName">
 <xsd:all>
 <xsd:element name="element1-name" type="element1-type"/>
 <xsd:element name="element2-name" type="element2-name"/>
 …
 </xsd:all>
</xsd:complexType>typedef struct {

The rules for mapping elements with optional and default values to XSD that were described in the
SEQUENCE section above are also applicable to the SET type.

SEQUENCE OF / SET OF

The ASN.1 SEQUENCE OF or SET OF type is used to specify a repeating collection of a given element
type. This is similar to an array type in a high-level programming language. For all practical purposes,
SEQUENCE OF and SET OF are identical. The remainder of this section will refer to the SEQUENCE OF
type only. It can be assumed that all of the defined mappings apply to the SET OF type as well.

The way the SEQUENCE OF type is mapped to XSD depends on the type of the referenced element. If the
type is one of the following ASN.1 primitive types (or a type reference that references one of these types):

• BOOLEAN
• INTEGER
• ENUMERATED
• REAL

The mapping is to the XSD list type. This is a list of space-separated identifiers. The syntax is as follows:

 ASN.1 production:

TypeName ::= SEQUENCE OF ElementType

 Generated XSD code:

<xsd:simpleType name="TypeName">
 <xsd:list itemType="ElementType">
</xsd:simpleType>

This will be referred to as the simple case from this point forward.

If the element type is any other type than those listed above, the ASN.1 type is mapped to an XSD
sequence complex type that contains a single element of the element type. The generated XSD type also
contains the maxOccurs (and possibly the minOccurs) facet to specify the array bounds.

The general mapping of an unbounded SEQUENCE OF type (i.e. one with no size constraint) to XSD is as
follows:

 ASN.1 production:

TypeName ::= SEQUENCE OF ElementType

 Generated XSD code:

<xsd:complexType name="TypeName">
 <xsd:sequence>
 <xsd:element name="ElementType" type="ElementType"
 maxOccurs=”unbounded”/>
 </xsd:sequence>
</xsd:complexType>

In this definition, the element type name is the name of the ASN.1 element type. The element type in the
XSD definition is the equivalent XSD type for the ASN.1 element type.

As of the 2002 version of the ASN.1 standards, it is now possible to include an element identifier name
before the element type name in a SEQUENCE OF definition. This makes it possible to control the name
of the element used in the generated XSD definition. The mapping for this case is as follows:

 ASN.1 production:

TypeName ::= SEQUENCE OF elementName ElementType

 Generated XSD code:

<xsd:complexType name="TypeName">
 <xsd:sequence>
 <xsd:element name="elementName" type="ElementType"
 maxOccurs=”unbounded”/>
 </xsd:sequence>
</xsd:complexType>

Example

The following shows the mapping for a SEQUENCE OF INTEGER. Since INTEGER is one of the simple
types listed above, an XSD list type is used:

 ASN.1 production:

SeqOfInt ::= SEQUENCE OF INTEGER

 Generated XSD code:

<xsd:complexType name="SeqOfInt">
 <xsd:list itemType="xsd:integer">
</xsd:complexType>

The following shows the mapping for a SEQUENCE OF UTF8String. Since UTF8String is not one of the
simple types listed above, an XSD sequence type is used:

 ASN.1 production:

SeqOfUTF8 ::= SEQUENCE OF UTF8String

 Generated XSD code:

<xsd:complexType name="SeqOfUTF8">
 <xsd:sequence>
 <xsd:element name="UTF8String" type="xsd:string"
 maxOccurs=”unbounded”/>
 </xsd:sequence>
</xsd:complexType>

Note that the element name is the name of the element type. To change the element name, the ASN.1 form
that allows an element name could be used:

 ASN.1 production:

SeqOfUTF8 ::= SEQUENCE OF myString UTF8String

 Generated XSD code:

<xsd:complexType name="SeqOfUTF8">
 <xsd:sequence>
 <xsd:element name="myString" type="xsd:string"
 maxOccurs=”unbounded”/>
 </xsd:sequence>
</xsd:complexType>

Sized SEQUENCE OF / SET OF

The SEQUENCE OF type may contain a size constraint. If this is the case, the XSD minOccurs and
maxOccurs facets are used to constrain the value to the given size.

 ASN.1 production:

TypeName ::= SEQUENCE (SIZE (lower..upper)) OF ElementType

 Generated XSD code:

<xsd:complexType name="TypeName">
 <xsd:sequence minOccurs=”lower” maxOccurs=”upper”>
 <xsd:element name="ElementType" type="ElementType"/>
 </xsd:sequence>
</xsd:complexType>

This mapping is for the complex case. For the simple case (i.e XSD list case), the XSD minLength and/or
maxLength facets are used to constraint the length:

<xsd:simpleType name="TypeName">
 <xsd:restriction>
 <xsd:simpleType>
 <xsd:list itemType="ElementType">
 </xsd:simpleType>
 <xsd:minLength value=”lower”/>
 <xsd:maxLength value=”upper”/>
 </xsd:restriction>
</xsd:simpleType>

CHOICE

The ASN.1 CHOICE type is used to specify a list of alternative elements from which a single element can
be selected. This type is mapped to the XSD choice complex type. The mapping is as follows:

 ASN.1 production:

TypeName ::= CHOICE {
 element1-name element1-type,
 element2-name element2-type,

...
 }

 Generated XSD code:

<xsd:complexType name="TypeName">
 <xsd:choice>
 <xsd:element name="element1-name" type="element1-type"/>
 <xsd:element name="element2-name" type="element2-name"/>
 …
 </xsd:choice>
</xsd:complexType>

This is similar to the SEQUENCE and SET cases described above. The only difference is that xsd:choice
is used instead of xsd:sequence or xsd:all.

The CHOICE type cannot have elements marked as optional (OPTIONAL) or elements that contain default
values (DEFAULT) as was the case for SEQUENCE and SET.

Open Type

An Open Type as defined in the X.680 standard is specified as a reference to a Type Field in an Information
Object Class. The most common form of this is when the Type field in the built-in TYPE-IDENTIFIER
class is referenced as follows:

 TYPE-IDENTIFIER.&Type

See the section in this document on Information Objects for a more detailed explanation.

There is no built-in XSD type that corresponds to the ASN.1 Open or ANY type. For this reason, a custom
type was created in the Objective Systems XSD run-time library (asn1.xsd) to model this type. This type is
asn1:OpenType and has the following definition:

 <xsd:complexType name="OpenType">
 <xsd:sequence>
 <xsd:any processContents="lax" minOccurs="1" />
 </xsd:sequence>
 </xsd:complexType>

The ASN.1 Open or ANY type is converted into a reference to this custom type as follows:

 ASN.1 production:

 TypeName ::= TYPE-IDENTIFIER.&Type

 Or

 TypeName ::= ANY

 Generated XSD code:

 <xsd:complexType name="TypeName">
 <xsd:sequence>
 <xsd:any processContents="lax" minOccurs="1" />
 </xsd:sequence>
 </xsd:complexType>

An example showing how an open type might be referenced in a SEQUENCE type and the corresponding
conversion to XSD is as follows:

 SeqWithOpenType ::= SEQUENCE {
 anOpenType TYPE-IDENTIFIER.&Type
 }

Generated XSD type:

 <xsd:complexType name=”SeqWithOpenType”>
 <xsd:sequence>
 <xsd:element name=”anOpenType” type=”asn1:OpenType/>
 </xsd:sequence>
 </xsd:complexType>

In this case, any valid XML instance can be used for the element.

Tagged Types

In ASN.1, it is possible to create new custom type using ASN.1 tag values as identifiers. These identifiers
are built into BER or DER encoded messages. In general, these tags have no meaning in an XSD
representation of an ASN.1 type that is used to create or validate XML markup. However, if the schema
definition is to be used to generate a BER or DER instance of a type, the tag information will be required.
For this reason, it is possible to add an application information annotation (appinfo) to the generated XSD
type.

The annotation carries all of the information an application would need to know to encode a BER or DER
message of the given type. This includes the tag’s class, identifier number, and how it is applied
(IMPLICIT or EXPLICIT). The type that specifies this information is the TagInfo type in the Objective
Systems’ XSD class library.

The mapping of an ASN.1 tagged type to XSD is as follows:

 ASN.1 production:

TypeName ::= Tagging [TagClass TagID] ASN1Type

 Generated XSD code:

 <xsd:complexType name="TypeName" asn1:tag=”[TagClass TagID]”

 asn1:tagging=”EXPLICIT”>
 equivalent XSD type mapping for ASN1Type
 </xsd:complexType>

The previous version of this tool generates an annotation for tag information. This can also be generated
with current version using the -appinfo option.

 Generated XSD code with annotation:

 <xsd:complexType name="TypeName">
 <xsd:annotation/>
 <xsd:appinfo>
 <asn1:TagInfo>
 <asn1:TagClass> TagClass </asn1:TagClass>
 <asn1:TagID> TagID </asn1:TagID>
 <asn1:Tagging> Tagging </asn1:Tagging>
 </asn1:TagInfo>
 </xsd:appinfo>
 </xsd:annotation>
 equivalent XSD type mapping for ASN1Type
 </xsd:complexType>

Tagging in the definition above is optional. If present, it is equal to either the keyword EXPLICIT or
IMPLICIT. The default value is EXPLICIT. A default value for all types in a module can also be specified
in the ASN.1 module header.

The tag’s form (constructed or primitive) is not specified in the mapping above. This is because this can be
determined by an application that is encoding or decoding a message of the given type.

EXTERNAL and EmbeddedPDV Types

The EXTERNAL and EmbeddedPDV types are built-in ASN.1 types that make it possible to transfer a
value of a different encoding type within an ASN.1 message. These are constructed types built into the
ASN.1 standard. An XSD representation of each of these types is available in the asn1.xsd library. The
ASN1C compiler generates a reference to the types in the library when it encounters a reference to one of
these types.

 ASN.1 production:

TypeName ::= EXTERNAL

 Generated XSD code:

<xsd:complexType name=”TypeName">
 <xsd:complexContent>
 <xsd:extension base=”asn1:EXTERNAL"/>
 </xsd:complexContent>
</xsd:complexType>

 ASN.1 production:

TypeName ::= EMBEDDED PDV

 Generated XSD code:

<xsd:complexType name=”TypeName">
 <xsd:complexContent>
 <xsd:extension base=”asn1:EmbeddedPDV"/>
 </xsd:complexContent>
</xsd:complexType>

Mapping of ASN.1 Information Objects

The ITU-T ASN.1 X.681 and X.682 standards specify a table-drive approach for the assignment of
constrained values to open types within a specification. These constraints are known as “table constraints”
and utilize Open Type, Class, Information Object and ObjectSet definitions. A mapping is presented below
for definitions of this type. This mapping will be generated by the ASN1C compiler or ASN2XSD
translation tool if the –tables option is specified.

CLASS

An ASN.1 CLASS is used to define the structure of Information Objects and Information Object Sets. An
Information Object Set is similar in structure to a relational table in that it is a collection of rows that define
the set of messages that may be used in a constrained open type field. For this reason, CLASS is modeled
as an unbounded collection of the fields defined within the CLASS definition.

The basic mapping is as follows:

 ASN.1 definition:

ClassName ::= CLASS {
 Class field definitions…
}

 Generated XSD code:

<xsd:complexType name=”ClassName">
 <xsd:sequence minOccurs=”0” maxOccurs=”unbounded”>
 <xsd:element name=”object”>
 <xsd:complexType>
 .. attribute mappings for class fields ..
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

The only types of fields within a CLASS definition that results in an ASN.1-to-XSD mapping are type
fields and fixed type value fields. These are translated to attributes with type xsd:string. Only simple value
types are supported (i.e. those that have a direct mapping to a string) in this mapping. Fields of any other
type (for example, object set fields) are ignored.

As an example, the mapping of a common 3GPP ASN.1 CLASS would be as follows:

 ASN.1 definition:

NBAP-PROTOCOL-IES ::= CLASS {

 &id ProtocolIE-ID UNIQUE,
 &criticality Criticality,
 &Value ,
 &presence Presence}
WITH SYNTAX {ID &id
 CRITICALITY &criticality
 TYPE &Value
 PRESENCE &presence}

 Generated XSD code:

 <xsd:complexType name="NBAP_PROTOCOL_IES">
 <xsd:sequence minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="object">
 <xsd:complexType>
 <xsd:attribute name="id" type="xsd:string"/>
 <xsd:attribute name="criticality" type="xsd:string"/>
 <xsd:attribute name="type" type="xsd:string"/>
 <xsd:attribute name="presence" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

In this definition, the following fields are fixed type value fields: id, criticality, and presence. Value is a
type field (the attribute name ‘type’ is always used for type fields). All were translated to attributes within
the inner complexType.

Information Object and Information Object Set

ASN.1 Information Object and Information Object Set definitions are used in table constraint specifications
within ASN.1 types for automatic encoding/decoding of open type fields. A mapping is done of an
Information Object Set declaration to XSD application information (appinfo) within generated types that
reference the constraints.

The basic mapping is as follows:

 ASN.1 Information Object Set definition:

InfoObjectSetName ClassName ::= {
 InfoObject declarations…
}

 Generated XSD code:

 <xsd:annotation>
 <xsd:appinfo>
 <ClassName>
 <object InfoObject attribute declarations/>
 ...
 </ClassName>
 </xsd:appinfo>
 </xsd:annotation>

The Information Object attribute declarations would be concrete instances of the attributes defined within
the Class type. A separate row would be generated for each Information Object defined within the
Information Object Set specification.

For example, the following is an Information Object Set specification using the NBAP-PROTOCOL-IES
class defined above:

CommonSetupRequests NBAP-PROTOCOL-IES ::= {
 {ID id-C-ID
 CRITICALITY reject
 TYPE C-ID
 PRESENCE mandatory} |
 {ID 46
 CRITICALITY reject
 TYPE ConfigurationGenID
 PRESENCE mandatory} |
 {ID 36
 CRITICALITY ignore
 TYPE SetupRqstFDD
 PRESENCE mandatory},

 ...
 }

 In this example, id-C-ID is an ASN.1 value defined as follows:

id-C-ID ProtocolIE-ID ::= 33

The generated XSD annotation for this declaration is as follows:

 <xsd:annotation>
 <xsd:appinfo>
 <NBAP_PROTOCOL_IES>
 <object id="id_C_ID" type="C_ID"
 criticality="reject" presence="mandatory"/>
 <object id="43" type="ConfigurationGenID"
 criticality="reject" presence="mandatory"/>
 <object id="36" type="SetupRqstFDD"
 criticality="ignore" presence="mandatory"/>
 </NBAP_PROTOCOL_IES>
 </xsd:appinfo>
 </xsd:annotation>

Use of Mappings in Type Definitions

ASN.1 type definitions can be created that reference class fields and that are constrained by objects defined
within an Information Object Set. The XSD mapping for these types contain normal element declarations
for fixed type value fields and special “open type” elements for type fields.

The special open type elements will reference a generated complexType with a name in the following
format:

 <Parent Type Assignment Name>_<Open Type Element Name>_OpenType

 The Information Object and Information Object Set definitions related to this type will be added as an
annotation in the format described earlier. The generated type will be a choice between all of the different
alternatives that make up the Information Object Set.

The basic mapping is as follows:

ASN.1 Definition:

TypeName ::= SEQUENCE {
 element1-name FixedTypeFieldRef ({TableConstraint}),
 element2-name FixedTypeFieldRef ({TableConstraint}{@key}),
 element3-name TypeFieldRef ({TableConstraint}{@key}),

...
}

Any combination of fixed type and type fields can be contained within the type definition.

Generated XSD code:

<xsd:complexType name="TypeName">
 <xsd:sequence>
 <xsd:element name="elem1Name" type="Field1Type"/>
 <xsd:element name="elem2Name" type="Field2Type"/>
 <xsd:element name="elem3Name"
 type="TypeName_elem3Name_OpenType"/>
 ...
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name=”TypeName_elem3Name_OpenType”>

 <xsd:choice>
 <!—- this is the annotation for the info object set -->
 <xsd:annotation>
 <xsd:appinfo>
 <ClassName>
 <object attributes declarations/>
 ...
 </ClassName>
 </xsd:appinfo>
 </xsd:annotation>
 <!—- these are all of the various message alternatives
 (name and type) defined within the info object set
 <xsd:element name="TypeName" type="TypeName"/>
 ...
 <!—- If info object set is extensible, message of unknown
 type is possible -->
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xsd:choice>

</xsd:complexType>

In this case, the fixed type field types are obtained directly from the class definition. The type field is a
reference to the generated open type field. The generated open type container type contains all of the
information on the set of messages that is allowed to occupy the open type field.

An example showing all of this using the NBAP protocol is as follows:

The definition of an NBAP Protocol Information Element Field is as follows:

ProtocolIE-Field ::= SEQUENCE {
 id

NBAP-PROTOCOL-IES.&id({CommonSetupRequests}),
 criticality

NBAP-PROTOCOL-IES.&criticality({CommonSetupRequests}{@id}),
 value

NBAP-PROTOCOL-IES.&Value({CommonSetupRequests }{@id})
}

This type allows any of the messages defined in the CommonSetupRequests information object set to be
populated in the Value field. The id and criticality must match that of the defined message. The XSD
definitions that are generated from this are as follows:

<xsd:complexType name="ProtocolIE_Field">
 <xsd:sequence>
 <xsd:element name="id" type=" ProtocolIE_ID"/>
 <xsd:element name="criticality" type="Criticality"/>
 <xsd:element name="value" type="ProtocolIE_Field_OpenType"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ProtocolIE_Field_value_OpenType">
 <xsd:choice>
 <xsd:annotation>
 <xsd:appinfo>
 <NBAP_PROTOCOL_IES>
 <object id="id_C_ID" type="C_ID"
 criticality="reject" presence="mandatory"/>
 <object id="43" type="ConfigurationGenID"
 criticality="reject" presence="mandatory"/>
 <object id="36" type="SetupRqstFDD"
 criticality="ignore" presence="mandatory"/>
 </NBAP_PROTOCOL_IES>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:element name="C_ID" type="C_ID"/>
 <xsd:element name="ConfigurationGenID"
 type="ConfigurationGenID"/>
 <xsd:element name="SetupRqstFDD" type="SetupRqstFDD"/>
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xsd:choice>
</xsd:complexType>

References

1 tML Guidelines for Mapping ASN.1 Syntax and Modules to XML Schemas
Proposed Draft Standard – T1M1 Working Group – August 13-17, 2001

