objective
SYSTEMS, INC.

ASN1C
ASN.1 Compiler User's Guide for C#

Version 7.8
Objective Systems, Inc.
December 2023

ASN1C: ASN.1 Compiler User's Guide for C#
Copyright © 1997-2023 Objective Systems, Inc.
License. The software described in this document is furnished under alicense agreement and may be used only in

accordance with the terms of this agreement. This document may be distributed in any form, electronic or otherwise,
provided that it is distributed in its entirety with the copyright and this notice intact.

Author's Contact Information. Comments, suggestions, and inquiries regarding ASN1C or this document may
be sent by electronic mail to <i nf o@bj - sys. conp.

Table of Contents

1. OVEVIEW OF ASNLC FOr CH ..ottt ettt ettt e e e e e 1
2. USING the COMPITES ... ettt e et e et e e e e e e ab s 2
ASNIC CH# ComMMEN LiNE OPLIONSeieeiiietiiiie ettt ettt et et et e et eeeni e e eneans 2
Compiler ConfigUIation FilE ... et ettt e e et e et e e e ena e eeens 8
ASN.L SEANAIA REVISIONSuiiiiiii ittt ettt ettt et e e e e e e e eaan s 13
ComPIler Error REPOMINGc.uuieeitieeeeit ettt ettt ettt et ettt e et ettt e et e eaa e e e eaa e e ennen s 14
3. ASNIC GUI USEIS GUITE ... eeeeetieeeeet ettt ettt ettt ettt e et e et e e e aaa e e e enan s 15
L@ Lot - PP 15
ACHVALING 8 LICENSE KEY ..ottt et e e 15
Creating @ NEBW PrOJECEu ittt ettt e et e e e et e e e enb e eee 17
Crealing @ PIOJECTvuuei ittt ettt e et et et e e et e e e e aee 19
Creating @ NEBW PrOJECEu ittt ettt e et e e e et e e e enb e eee 19
EdItiNG @ PrOJECE .. .ceieieieeiit et 20
OPENING @ PIOJECT ..ottt ettt ettt e ettt e ettt e et e et e e e eab e e eenbaaaaees 20
SAVING @ PIOJECE .. .een ettt ettt et 20
EdItiNG SChEMES ..ot ettt e e ettt e e et et e e e e tb e e e enb e aeee 20
Creating a New SChema Filei i 21
Editing & SChemMa Fileo 21
Deleting @ SChema File e 22
1600]07] 11 112 o [O UP PP UP PPN 22
L1 g = o PO UOP PPN 22
o) (o] ST SPP PP RPPPTRP 23
PrOJECE WINGOW ...ttt ettt e et e ettt e e et e e e e eaa s 24
ASNLL TTEE WINUOW ..ttt ettt ettt ettt e et e et et e et et e e e ena e e e eaanas 27

ErrOr LOG WINOOW ... ittt ettt ettt ettt e e et et e e et et e e e eeba e eeenes 27
PrOJECT SEILINGS ...t eeti ettt ettt ettt e e e e 28

4. Generated CH# SOUICE COUE OVEIVIEWcoeuueieiiiii ettt e ettt e e et e et e e et e e e et e e e et 39
NaMESPACE SPECITICALION ...e.vuieeiiiee ettt ettt e et e e e e e e e e s 40
O S BT o T (o E PP PRSPPI 40
TAO CONSIANT ...ttt et et ettt 41
PUBIiC MemBer Variallescoouiiii e e e 41
107010 1 (1 (o PP 41
DECOOE MELNO ...ttt ettt e et e et e e et e e e b s 42
ENCOOE MEINOMeeeeiee e ettt ettt e ettt e e et et e e e e a b e e e eata e eenes 43
OLhEr IMEINOOS ...t ettt ettt e ettt e et e bt e e et e rb e e e eeraaeaeees 43
IINEE ClBSSES ..ttt ettt ettt ettt e ettt e e et h e et h et a et e e et et b e et e nb e e e enb e aaee 43
o gl o =T | oo PP SOP PP T O UPPPTT 44
5. ASN.L Type tO CH# Class MaADPINGS ... eeeeruneetetiaeeteti ettt e et et et e et et e et et e et e e e e et e e eraa s 45
BOOLEAN .ottt n e e 45
INTEGER ...ttt e ettt et ettt e ettt e ettt e e et et e et et e e e et e aeen 45
BIT STRING ..ottt ettt ettt ettt et e e e et e b e et e et e et e et e et enaa e e e ennnns 46
OCTET STRING ...ttt ettt e et e b e e et e ettt e et e b e e e e ra s 47
TBCD @0 BCD SEINQS . .vtueetettiee et e ettt sttt e ettt e ettt e e e et e e e e at e r e e e estaeeeeataeeeenanaeeeees 48
PLIMINIGENTITY .ottt e e et et e et e e e e e e e na s 48

O g o= o S 1o [Y o= PP ST PT R PPPPTT 49
ENUMERATED ..ottt ettt e et b et e et eeeenan s 49
N 1 PP PP UPPPT 50
OBJECT IDENTIFIER ...ttt et e e e e e e e s 51
Using string for OBIJECT | DENTI FI ER ...coeiiiii e 51
RELATIVE-ROID ...ttt ettt e et e et et e e et et e e et et e e e e eaa s 52
Using string for RELATT VE- O D ...ouniiiiiiccee e 52

ASNIC

A PP 52
REAL (BBSE 10) ..uetiitiieiiii ettt e ettt e et s e e e et e e e et e e e et e e e e e e et e et e et a e et 53
SEQUENCE ..ottt et e et e ettt e e ettt e e e e e et r e e e et e e e e et e e e et b e e e eatnnaeeatanaaaaae 53
Creation Of TEMPOrArY TYPESvvuuieiiieeii et et e et e e e e e e e et e e et e e et e e et e e e e eat e e et eeaneenes 55
OPTIONAL KEYWOTT ...ttt ettt e et e et e et e e et s e e et s e e e et e e e et e e e etb e e e enan s 56
DEFAULT KEYWOITveieieiiiie ettt e et e e e et e e e et e e e e et e e e e et 56
EXEENSION EIBIMENES .ouiiiiiii et e et e et e e e et e e e 56

XD <xst:all> TYPE MAPPING ...uiitneiiieiiiie e et e e e e e e e e e e e et e e e te e s e e e st e e aanaaeanaes 56

S PSSP 57
SEQUENGCE OF ..ottt ettt e ettt s e et et e e e e et e e e e et n e e e et neeeatnaeeennnns 57
Generation of Temporary Types for SEQUENCE OF ElementsS........cccoveviiieiiiiieiiiecii e 58
SEQUENCE OF Type Elements in Other Constructed TYPESccvuviiviiiiiiieiiii e e e 58

S I O PP 59
102 [O SO 59
Creation Of TEMPOrArY TYPESvvuuieiii et ee et e et e et e e e e et e e st e e et e e et e e e e e et e e et eeanaeeees 60
Populating Generated Choice Structures for ENCOdiNgocevviiiiiiiiiii i 61
Accessing the Choice Element Value after Decodingccceuveiiiiiiiiieiiii e 61

XD <xsd:UNionN> TYPE MAPPING .vuueirieiitieeiiee et e e e e e e e e et e e e e e et e e et e e san e estn e eannaaannaaes 61
(007 T Y/ o PP 61
0 o W11Vl o 0 o oo N 63

(T = 5/ o= PP 63
Ll o=o (0 [=e | D A I Y o 63
e = 0= (= A= o I I - 64
V= 0TI o=} o= 1 o 65
INTEGER Value SPECIHTICALIONcvviiiiii i e e e e e e e et e e e e eens 66
BOOLEAN Value SPECIfiCatiONuiiiiiiiiieiii e e e e e e e e e e e e e e aneees 66
Binary Sring Value SPECITICAtIONuiiiiiiiiii e 66
Hexadecimal String Value SPeCITiCationcoevuiiiiiiiie e e 67
Character Sring Value SPECITICAtIONccvuiiiiiiiii e e e 67
Object Identifier Value SPECITICAIONuiiiiiiiii e 67
ENUMERATED Value SPECIiCaLIONuuuiiiiiiiiieiiiii et e s 67
REAL Value SPECIHICALIONciviiiiii i e e e e e e e e e e e e e et e e eanaeee 68
SEQUENCE Value SPECIHTICALION ... cvvviiiii i e e e e e e e e e e e e e eens 68

SET Value SPECITICALION ...vuiiiiiiii e e e e e e e e e e e et e e e e eeens 68
SEQUENCE OF Value SPECITICALIONiiiieiiieieiii e e e et e et e et e e e eai e e eesi e eaens 69

SET OF Value SPECIHTICALION .. cevuiii i e e e e e e e e e e e et eeaa e e aanaaes 69
CHOICE Value SPECITICALIONuuiiiieiii e e e e e e e e e e e e et e et e et e e e e aan s 69

6. Generated BER/DER/CER ENCOUE MENOUSooiivviiiiiii i et ene 71
Memory-buffer Based Definite Length ENCOOENSooovuiiiiiiiii e 71
Generated C# Method Format and Calling Parametersoevviiiiiiiciiie e e 71
Populating Generated Variables for ENCOOINGocvviiiiiiiiiiiie e e e e e e 72
Procedure for Calling Memory-Buffer Based BER Encode Methods..............cooeeviviiiiiiiinceinns 72
Reuse of C# ENCOAING OBJECESuiiiiiciii e e e e e e e aaas 74
Stream-Oriented Indefinite Length Encode Methodsccoviiiiiiii e 75
Generated C# Method Format and Calling Parametersooevviiiiiiiciiie e e 75
Procedure for Calling C# BER Sream-Oriented Encode Methodsccocciviiiiiiiiinecciee, 76
7. Generated BER/DER/CER Decode MEthOUSiiiiiiiiieiiiii e 78
Generated C# Method Format and Calling Parametersc..veiuieiiiiciii e 78
Procedure for Calling C# BER Decode MethOOSc.uuiiiiiiiiiiiciie e e 78
Reuse of CH DeCOdING OBJECESuuiiiicii e e e e e e e e e e et e et a e e e e e aanaees 79
Deferred Decoding and Partial DECOAINGccvuuiiiiniiiiieiiie e e e e e e e e e e eanes 80
8. Generated PER ENCOAE MENOUSiiiiiiiiiiii et 82
Generated C# Method Format and Calling Parametersvviuieiiii e e 82
Procedure for Calling C# PER Encode MethOodsSccuiiiiiiiiiii i 83

ASNIC

Reuse of CH ENCOAING ODJECESiiiiiii et e e e e e e e e e e et e e e e e eanaes 84

9. Generated PER DeCOUE MEINOUSccuuuiiiiiiiiiiee ittt e e et e e e e e e aae e eeeenns 86
Generated C# Method Format and Calling Parametersc..vviuieiiii e 86
Procedure for Calling C# PER Decode MethOOSooiiiiiiii i e 86
Reuse of CH DeCOdING OBJECESuuiiiiicii et e e e e e e e e e e et e et a e e e e e aanaees 87

10. Generated XML MELNOUSoieeiiieeiii e e e et e et e e e et e e eaean s 89
L@ Y = PP 89
Differences between OSys-XER and XER (BASIC-XER)uuviiiiiiiiiiiiiiiieeeeii et 89
EXTENDED-XER ...ttt sttt ettt e e ettt e e et et r e e e e ate s e e e eate s e e e eatnneeeeatnnaeeenes 90

How to Generate Code for EXTENDED-XERcccuuiiiiiiiiiiiiiiiiiieceii e 90

Supported Instructions and Brief SUMMArYoiiiiiiiiiicii e e e e e 91

[T 00T 1o = PSP 91

Working with generated EXTENDED-XER COUEcccvuiiiiiiiiiiciie e 91

Generated ENCOOE MELNOUScivuiiiii e e e e e et e e e e e s 92
Generated C# Method Format and Calling Parametersoevvuiieiieeiiiieiie e e e 92

Procedure for Calling C# XER Encode MethodSooviiiiiiiiiiiiiece e 93

Generated DECOUE MEINOUSuuiiiiiiiie e e ettt e e et e e e et e e e eatnaeeaee 97
Generated Decode Methods when Using the Default Parser (XmIReader)ooocvvvveviivevinicinnnnn, 97

Generated Decode Methods when Using the SAX Parsercocevveiiii i 98

11. Generated OER ENCOOE MELNOUSccovviiieiiiiii et e e e 100
Generated C# Method Format and Calling ParamMetersviiiieiiiiciii e e e e e 100
Procedure for Calling C# OER ENcode MethOOScc.uiiiiiiiiiicie e e 100
CaNONICAl OER ...t e e e e aaa s 102

Reuse of C# ENCOAING ODJECESoviiii e e e e e e e e e e e ees 102

12. Generated OER Decode MEthOUScovuuiiiiiiiii e et e e e e eaaens 103
Generated C# Method Format and Calling ParamMetersviviiiiiiieiii e e e e e 103
Procedure for Calling C# OER Decode MEthOUSccuuiiiiniiiiii e eaes 103
CaNONICAl OER ...t e e e e aaa s 104

Reuse of CH# DeCOUING ODJECLSuuiiiieiiiiee e e e e e e e e e e et e e et e e ean s 105

13. Generated JSON MELNOUSoiiiiiieei et e et e e e e e et e eaeaa s 106
L@ N T Y S PTSPTRSPPRN 106
Generated JSON ENCOOE MELNOAScovvviiiiiii e e eeeeens 106
Generated Method Format and Calling Parameterscouvveviii i 106

Populating Generated Variables for ENCOAINGoovviiiiiiicii e 106

Procedure for Calling JSON Encode Methodsc..coiiiiiiiiiiciii e 107

Reuse of C# Encoding OBJECEScovuiiii e 108

Generated JSON Decode MEhOUSuiiiiiiiieeii e e e s 109
Generated Method Format and Calling Parameterscoovveiiii i 109

Procedure for Calling C# JSON Decode Methodscveiiiiiiiiiiiii e 109

Reuse of CH# DeCOUING ODJECLSuuuiiiieiiiieiii e e e e e e e e e e e e e e e et e e et e eaanaes 110

14. Generated MDER ENCOUE MEINOUSccuuuiiiiiiiieieii e e e e e et 112
Generated Method Format and Calling Parameterscouuiiiiiiiiiiiieiii e 112
Populating Generated Variables for ENCOTINGccouuiiiiiiiiiiii e e e 112
Procedure for Calling MDER Encode MethOdSc..oeiuiiiiiiiiiiiec e e 113
Reuse Of ENCOOING OBJECESivuiiiii i e e e e e e e e e e e e et e et e e et e e e e e eaneens 114

15. Generated MDER DeCode MELNOUScviiuiiieiiiii et e et e a e aeeeeeen 116
Generated Method Format and Calling Parametersccuuieiiiiiiiiiiiiii e e e e 116
Procedure for Calling MDER Decode MEthOdSccuuiiiiiiiiiii e 116
Reuse of DeCOdING OBJECESiiiiiiii e e e e e e e et e e e e e st e e e e eaneees 117

16. Tahle CONSITAINt PrOCESSING ...vuietueetteetteeeteee e et e et eeat e e st e et e et e eatnaestnaestneeanaeeateeetnaesenaerees 118
CLASS SPECITICAIION ...eieivtieee ettt e et e et e e et e e et e e e e e et e e e e et e e e et e e e et neeeeran s 118

Data MemDEr GENEFALIONiveuei ettt e e et e et e et e e et e e e et e e e et e e e et e 118

Method and ConStruCtOr GENEIAtIONuiereiriieeeeiiireeeeii e e et e e eeti s e e eeei e eeere e eeeninaaaaes 119
ABSTRACT-SYNTAX ClaSS ... eiiiiiieetiiie ettt e e e et e e e e e s 120

ASNIC

17.

18.

19.
20.

21.
22.
23.

TYPE-IDENTIFIER ClaSSccctiiiiiiiiieieeeeeeeieie e s e e et ettt s s s e e e e e e eaatatn s e e e aaeeasaatnnaeaeaeeaeens 121

T {0 g g g o o] =" PN 121
INfOrMation OBJECE SELoviiii e e e e e e e e e e e et e e et e et e e e eaans 122
Generated Information Object Table SITUCIUIEiiiin i e e 123
Smple FOrm Code GENEIatiONcccuuieiiiiiie e e e e e e e e e e e e e e e et e et e e eanea et 124

Table FOrm Code GENEIatiONuuiiiiiii ettt e e et e e e et e e e eat e e e eete e eeeatn s eeeestnaaeaenes 125
Additional Code Generated for the -tables Optioncoeiviiiiiiieii e 125
Populating OpenType Variables for ENCOAINGcouuiiiiiiiiiicii e e s 127
Decoding Types with Table CONSIaiNtSuiiiiiiiii e e e e 129
Generated Print MELNOOSoiiiiiiiee e e e e et e e et e et e e e e e e aeae 130
Generated C# Method Format and Calling Parametersoviviiiiiiieiii e e e e e 130
Generated Metadata MEINOOSuuiiiiiii et e e e e e e e e s 132
S Lo 10 L =Y o P 132
(€ T Y - YU L= = Lo o N 133
(€1c pTc = <o 1Y = 11 = PP 134
Event Handler and Exception Handler INtErfacesocovueiiiiiiii e e e 135
Y= g1 g =g To | = SR 135
HOW EVeNnt HandlerS WOTKuuiiiiiiie ettt e e 135

HOW t0 USe EVENt HANAIEIScoviiieieii et 136

(o= oo g I o = o 142
IMPORT/EXPORT Of TYPES 1.vttuuuiiieeetttiiiiiiaisseeeeeteattttassaeeaeaasstss s saaeaeeasstasnaaaeeaeeesssnsnaaaaaeaeeennnns 144
(0o Tot B oo I 1= == o P 145
ASNLC X.208 SUDPPONT ©..ueeeeeteetittiseseeeeeesaateaaseeeseeasssee s aaaeaeeeestsenaaaeaaeeessstnnaaaaeeseeessrnnnnaaaeees 146
ROSE OPERATION and ERRORciiiiiiiiiiieeeeie ettt e s e e e ettt s s s e e e e e e et a s s e e e e e e aastatn e naaaeaeeeennns 146
SNMP OBJIECT -TY PE ..ottt ettt ettt e e e e et et et e e e e e e e ettt e e e e eeaaaesatann e asaeeeeeessnnns 149

Vi

Chapter 1. Overview of ASN1C for C#

The ASN1C code generation tool transates an Abstract Syntax Notation 1 (ASN.1) or XML Schema Definitions
(XSD) source file into computer language source files that allow typed data to be encoded/decoded. This release of
ASNI1C includes options to generate code in the following languages: C, C++, C#, Java, Python, or Go. This manual
discusses the C# code generation capabilities. The following other manual s discuss the other language code generation
capabilities:

e ASNI1C C/C++ Compiler User’'s Manual : C/C++ code generation
» ASNI1C Java Compiler User’s Manual : Java code generation

* ASNI1C Python Compiler User’s Manual : Python code generation
» ASN1C Go Compiler User’s Manual : Go code generation

Each module or namespace that is encountered in an ASN.1 or XSD source file results in the generation of a series
of C# source files. A separate C# file is generated for each production (type or global element) in the source file.
Additional files are generated for compiler-generated productions and to hold value specification constants.

Thereisalso aset of classesthat form the run-time component of the C# package. These classes provide the primitive
component building blocksthat are assembled by the compiler to encode/decode complex structures. They also provide
support for managing message buffers that hold the encoded message components.

ASN1C workswiththeversion of ASN.1 specifiedin ITU-T international standards X.680 through X.683. It generates
code for encoding/decoding data in accordance with the following encoding rules:

» Basic Encoding Rules (BER), Distinguished Encoding Rules (DER), and Canonical Encoding Rules (CER) as pub-
lished inthe ITU-T X.690 and I SO/IEC 8825-1 standards.

» Packed Encoding Rules (PER) as published in the ITU-T X.691 and 1SO/IEC 8825-2 standards. Both aligned and
unaligned variants are supported.

e XML Encoding Rules (XER) as published in the ITU-T X.693 and I SO/IEC 8825-3 standards.
» Octet Encoding Rules (OER) as published in the ITU-T X.696 and | SO/IEC 8825-7:2014 standards.
» JSON Encoding Rules (JER) as published in the ITU-T X.697 and | SO/IEC 8825-8:2018 standards.

The compiler is capable of parsing all ASN.1 syntax as defined in the standards. It is capable of parsing advanced
syntax including Information Object Specifications as defined in the ITU-T X.681 standard as well as Parameterized
Typesasdefinedin ITU-T X.683.

Notethat X ER support does not include support for the EXTENDED-XER syntax. Thisisaccomplished through direct
compilation of XSD files. Aninternal translation of XSD to ASN.1 based on the rules in the X.694 standard is done
within the compiler and the resulting ASN.1 syntax is compiled into C# classes.

ASN1C also contains a special command-line option - -asnstd x208 - that allows compilation of deprecated features
from the older X.208 and X.209 standards. These include the ANY data type and unnamed fields in SEQUENCE,
SET, and CHOICE types. The compiler can also parse type syntax from common macro definitions such asthe ROSE
OPERATION and ERROR macros.

Chapter 2. Using the Compiler

The ASN1C compiler distribution contains command-line compiler executables as well as a graphical user interface
(GUI) wizard that can aid in the specification of compiler options. Please refer to the ASN1C C/C++ Compiler User’'s
Manual for instructions on how to run the compiler. The remaining sections describe options and configuration items
specific to the C# version.

ASN1C C# Command Line Options

The following table shows a summary of the command line options that have meaning when C# code generation is
selected:

Option Argument Description

-alow-ambig-tags This option suppresses the check that
is done for ambiguous tags within a
SEQUENCE or SET type within a
specification. Special code is generat-
ed for the decoder that assigns values
to ambiguous elements within a SET
in much the same way as would be
done if the elements were declared to
bein a SEQUENCE.

-asnstd X680 This option selects the version
X680-2021 of ASN.1 syntax to be parsed.
X680-2015 ‘x680" (the default) refers to mod-
X680-2008 ern ASN.1 as specified in the ITU-T
mixed X.680-X.690 series of standards. Re-
x208 fer to the section called “ASN.1 Stan-

dard Revisions’ for moreinformation.

-ber None This option instructs the compiler to
generate functions that implement the
Basic Encoding Rules (BER) as spec-
ified in the ASN.1 standards.

-c# None Generate C# source code.

-cer None This option instructs the compiler to
generate functions that implement the
Canonical Encoding Rules (CER) as
specified in the ASN.1 standards.

-coer None This option is used to generate en-
code/decode methods that implement
the Octet Encoding Rules (OER) such
that encodings are canonical and de-
codings are expected to be canonical.

-compact None This option instructs the compiler to
generate more compact code at the
expense of some constraint and error
checking. Thisis an optimization op-
tion that should be used after an appli-
cation isthoroughly tested.

Using the Compiler

Option

Argument

Description

-compat

<versionNumber>

Generate code compatiblewith an old-
er version of the compiler. The com-
piler will attempt to generate code
more closely aligned with the given
previous release of the compiler.

<versionNumber> is specified as x.x
(for example, -compat 5.2)

-config

<filename>

Thisoptionisusedto specify thename
of afile containing configuration in-
formation for the source file being
parsed. A full discussion of the con-
tentsof aconfigurationfileisprovided
in the section called “Compiler Con-
figuration File”

-csfile

*.csor aspecific .csfile name

If valued with *.cs, indicates that
ASNI1C is to generate one .cs file
for each ASN.1 module processed. If
valued with a specific .cs file name,
indicates that ASN1C is to generate
one .cs file to hold all code. Do not
specify any folder information in the
-csfile value; use the -o qualifier in-
stead.

-cskeyfile

strongly named key file

Thisoptionisusedto specify thename
of a strongly named key file (usual-
ly a .snk file) that contains a signa
ture to be used to sign an assembly.
If used along with the -genmake op-
tion, the generated makefile will con-
tain instructions to sign the assembly
withthekey file. If used along with the
-veproj option, the generated project
file will contain instructions to sign
the assembly with the key file.

-depends

None

This option instructs the compiler to
generate a full set of C# source files
that contain only the productions in
themainfilebeing compiled anditems
those productions depend on from | M-
PORT files.

None

This option instructs the compiler to
generate functions that implement the
Distinguished Encoding Rules (DER)
as specified in the ASN.1 standards.

-dirs

None

Thisis a C# option that causes a sub-
directory to be created to hold each of
the generated C# source files for each
modulein an ASN.1 source file.

Using the Compiler

Option

Argument

Description

-dotnetvs

None

Generate .Net v5 .csproj files (if used
with -vcproj). If not specified, .Net
v4 .csproj fileswill be created.

-dotnetv6

None

Generate .Net v6 .csproj files (if used
with -vcproj). If not specified, .Net
v4 .csproj files will be created.

-events

None

Generate extracodeto invoke user de-
fined event and error handler callback
methods (see section the section called
“Event Handlers’).

-genmake

None

Thisoptionisusedto generateamake-
file for compiling generated classes
using nmake command from within a
Visual Studio .NET command prompt
window.

-genmetadata

None

This option is used to generate meth-
ods to permit accessing metadata
about SEQUENCE and SET types.
Users may query value ranges (rep-
resented as Asnl1VaueRange objects)
and optional/required status for ele-
ments in the given SEQUENCE or
SET.

-genTest or -test

None

This option causestest code to be gen-
erated that will populate a PDU object
with random test data. This code will
be embedded in the body of agenerat-
ed writer program; thus the option on-
ly results in code being generated if -
writer is also specified.

<directory>

This option is used to specify a di-
rectory that the compiler will search
for ASN.1 source files for IMPORT
items. Multiple —I qualifiers can be
used to specify multiple directoriesto
search.

-json or -jer

None

This option is used to generate en-
code/decode functions that implement
the Javascript Object Notation (JSON)
Encoding Rules (JER) as specified in
the X.697 ASN.1 standard. (Note: -jer
+isno longer supported. Similar func-
tionality is now standard JER.)

None

This option instructs the compiler to
not generate codeto check constraints.
When used in conjunction with the
—compact option (described next), it
produces the smallest code base for a
given ASN.1 specification.

Using the Compiler

Option

Argument

Description

-list

None

Generate listing. This will dump the
source code to the standard output de-
vice asit is parsed. This can be useful
for finding parse errors.

-hamespace

<namespaceName>

This is a C# option that allows the
entire C# namespace to be changed.
Instead of the module name, the full
name specified using this option will
be used. Thisoption cannot be used in
conjunction with —nspfx option.

-noaccomment

None

This option suppresses the generation
of the comment that shows the asnlc
command that was used to generate
the code.

-nodecode

None

This option suppresses the generation
of decode functions.

-noencode

None

This option suppresses the generation
of encode functions.

-noevents

None

This option supresses generation of
event handling code that is generated
by default to enable element tracking,
afeature used to enhance error report-

ing.

-nolndefLen

None

This option instructs the compiler to
omit indefinite length tests in generat-
ed decode functions. Thesetestsresult
in the generation of alarge amount of
code. If you know that your applica-
tion only uses definite length encod-
ing, this option can result in a much
smaller code base size.

-noOpenExt

None

This option instructs the compiler to
not add an open extension element
in constructs that contain extensibility
markers. Thepurpose of theelement is
to collect any unknown itemsin ames-
sage. If an application does not care
about these unknown items, it can use
this option to reduce the size of the
generated code.

-noPLMN

None

If not specified, if the ASN.1 con-
tains a production named PL M Niden-
tity (any case), that production will
be treated asan OCTET STRING, re-
gardless of how it may be defined
in the ASN.1. But if -noPLMN is
specified, this special recognition of
PLMNidentity will be disabled, and it
will be treated according to its defini-

Using the Compiler

Option

Argument

Description

tion in the ASN.1 (frequently TBCD-
STRING, athough in most cases that
isincorrect).

-noTBCD or -noBCD

None

Disable special treatment of BCD and
TBCD strings.

-noUniqueNames

None

Turn off the capability to automat-
icaly generate unique names to re-
solve name collisions in the generat-
ed code. Name collisions can occur,
for example, if two modules are be-
ing compiled that contain a produc-
tion with the same name. A unique
name is generated by prepending the
module name to one of the produc-
tions to form a name of the form
<module>_<name>.

Note that name collisions can aso be
manually resolved by using the type-
Prefix, enumPrefix, and valuePrefix
configuration items (see the Compil-
er Configuration File section for more
details)

-nspfx

<prefixName>

ThisisaC# option for adding a prefix
in front of the assigned C# namespace
name. By default, the C# namespace
name is set to the module name. If the
namespace is embedded within a hier-
archy, thisoption can beused to set the
prefix that must be added to allow C#
to find the class definition.

<directory>

Thisoptionisusedto specify thename
of adirectory to which all of the gen-
erated fileswill be written.

None

Generate functions that implement the
Octet Encoding Rules (OER) as spec-
ified in the ASN.1 standards.

-oid-as-string

None

Use string to represent OBJECT
| DENTI FI ERand RELATI VE- O D
values. The strings must be in dot-
ted-number format (e.g. "0.5.1234").

-pdu

<typeName>

Designate given type name to be a
Protocol Definition Unit (PDU) type.
By default, PDU types are determined
to be types that are not referenced by
any other types within amodule. This
option allowsthat behavior to be over-
ridden.

Using the Compiler

Option

Argument

Description

The* wildcard character may be spec-
ified for <typeName> to indicate that
all productionswithin an ASN.1 mod-
ule should be treated as PDU types.

-pa’

None

This option instructs the compiler
to generate functions that implement
the Packed Encoding Rules (PER) as
specified in the ASN.1 standards.

-genPrint -print

None

This option specifies that print meth-
ods should be generated. Print

-Sax

None

This option instructs the compiler to
generate code that uses the old SAX
XML parser API. The default isto use
the C# XmlReader API.

-shortnames

None

Thisoptionisused to changethe name
generated by compiler for embedded
typesin constructed types. Thisoption
is required to handle the limit on the
size of filenamesin certain situations.
With this option, the generated code
filenames would be shorter than with-
out this option.

-stream

None

This option instructs the compiler
to generate stream-based encoders/
decoders instead of memory buffer
based. This makes it possible to en-
code directly to or decode directly
from a source or sink such as afile or
socket. In the case of BER, it will also
cause forward encoders to be generat-
ed, which will use indefinite lengths
for al constructed elementsin a mes-

sage.

-tables

None

This option is used to generate ad-
ditional code for the handling of ta-
ble constraints as defined in the X.682
standard.

-use-enum-types

None

This option instructs the compiler to
generate an enum along with ints
when acollection of named integersis
encountered in the ASN. 1.

-VCproj

<version>

This option instructs the compiler to
generate a Visual Studio C# project
file. <version> is the version of Visu-
al Studio (2022, 2019 (default), 2017,
2015, 2013, 2012, 2010, 2008, 2005).
For 2019 or higher a project file that
targets .NET v5 will be generated. For
2017 or lower a project file that tar-

Using the Compiler

Option Argument Description
gets .NET Framework v4 will be gen-
erated.

-warnings None Output information on compiler gen-

erated warnings.

-xer None This option instructs the compiler to
generate functions that implement the
XML Encoding Rules (XER) as spec-
ified in the ASN.1 standards. Related
XML Schema can be produced by us-
ing the -xsd command line option.

-xml None This option instructs the compiler to
generate functions that implement the
XML Encoding Rules (XML) as spec-
ified in the World-Wide Consortium
(W3C). Related XML Schema can be
produced by using the -xsd command
line option.

Compiler Configuration File

In addition to command line options, a configuration file can be used to specify compiler options. These options can
be applied not only globally but also to specific modules and productions.

A simpleform of the Extended Markup Language (XML) isused to format itemsin thefile. Thislanguage was chosen
becauseit isfairly well known and provides a natural interface for representing hierarchical data such as the structure
of ASN.1 modules and productions. The use of an external configuration file was chosen over embedding directives
within the ASN.1 source itself due to the fact that ASN.1 source versions tend to change frequently. An external
configuration file can be reused with a new version of an ASN.1 module, but interna directives would have to be
reapplied to the new version of the ASN.1 code.

At the outer level of the markup is the <asnlconfig> </asnlconfig> tag pair. Within this tag pair, the specification of
global items and modules can be made. Global items are applied to all itemsin all modules. An example would be the
<storage> qualifier. A storage class such as dynamic can be specified and applied to all productionsin all modules.
Thiswill cause dynamic storage (pointers) to be used to any embedded structures within all of the generated code to
reduce memory consumption demands.

The specification of amodule is done using the <module></module> tag pair. Thistag pair can only be nested within
the top-level <asnlconfig> section. The module is identified by using the required <name></name> tag pair or by
specifying the name as an attribute (for example, <module name="MyModul€e” >). Other attributes specified within the
<module> section apply only to that module and not to other modules specified within the specification. A complete
list of all module attributes is provided in the table at the end of this section.

The specification of an individual production is done using the <production></production> tag pair. Thistag pair can
only be nested within a<module> section. The production isidentified by using the required <name></name> tag pair
or by specifying the name as an attribute (for example, <production name="MyProd">). Other attributes within the
production section apply only to the referenced production and nothing else. A complete list of attributes that can be
applied to individua productionsis provided in the table at the end of this section.

When an attribute is specified in more than one section, the most specific application is always used. For example,
assume a <typePrefix> qualifier is used within a module specification to specify a prefix for all generated typesin
the module and another one is used to specify a prefix for a single production. The production with the type prefix

Using the Compiler

will be generated with the type prefix assigned to it and all other generated types will contain the type prefix assigned
at the module level.

Valuesin the different sections can be specified in one of the following ways:

1. Using the <name>value</name> form. This assigns the given value to the given name. For example, the following
would be used to specify the name of the “H323-MESSAGES’ module in a modul e section:

<nane>H323- MESSAGES</ nane>

2. Flag variables that turn some attribute on or off would be specified using a single <name/> entry. For example, to
specify agiven production is a PDU, the following would be specified in a production section:

<i sPDU >

3. An attribute list can be associated with some items. Thisis normally used as a shorthand form for specifying lists
of names. For example, to specify alist of type namesto be included in the generated code for a particular module,
the following would be used:

<i ncl ude types="TypeNanel, TypeNane2, TypeNane3”/ >
The following are some examples of configuration specifications
<asnlconfi g><st orage>dynani c</ st orage></asnlconfi g>

This specification indicates dynamic storage should be used in all places where its use would result in significant
memory usage savings within all modules in the specified sourcefile.

<asnlconfi g>
<nodul e>
<nane>H323- MESSAGES</ nane>
<sour ceFi | e>h225. asn</ sourceFi | e>
<typePrefix>H225</typePrefi x>
</ nodul e>

</ asnlconfig>

This specification appliesto module ‘ H323-MESSAGES' in the source file being processed. For IMPORT statements
involving thismodule, it indicates that the sourcefile ‘h225.asn’ should be searched for specifications. It aso indicates
that when C or C++ types are generated, they should be prefixed with the ‘H225'. This can help prevent name clashes
if one or more modules are involved and they contain productions with common names.

The following tables specify the list of attributes that can be applied at all of the different levels: global, module, and
individual production:

Global Level
There are no attributes that are specific to C# that can be specified at the global level.
Module Level

These attributes can be applied at the module level by including them within a <module> section:

Name Values Description

<name> </name> module name This attribute identifies the module to
which this section applies. It is re-
quired.

Using the Compiler

Name

Values

Description

<include
values="names’'/>

types="names’

ASN.1 type or values names are spec-
ified as an attribute list

Thisitem allows alist of ASN.1 types
and/or values to be included in the
generated code. By default, the com-
piler generates code for al types and
values within a specification. This al-
lows the user to reduce the size of the
generated code base by selecting only
a subset of the types/values in a spec-
ification for compilation.

Note that if atype or value is includ-
ed that has dependent types or values
(for example, the element types in a
SEQUENCE, SET, or CHOICE), al
of the dependent types will be auto-
matically included as well. However,
if an element ismarked <notUsed/> or
<notUsedSkip/>, the referenced type
isnot automatically included; if an el-
ement is marked <notUsedDecode/>
or <notUsedDecodeSkip>, the refer-
enced type is included for encoding
only; if an element is marked <no-
tUsedEncode/>, the referenced typeis
included for decoding only.

<include importsFrom="name” />

ASN.1 module name(s) specified as
an attribute list.

Thisform of theinclude directivetells
the compiler to only includetypesand/
or valuesinthe generated codethat are
imported by the given module(s).

<exclude
values="names’'/>

types="names’

ASN.1 type or values names are spec-
ified as an attribute list

Thisitem allows alist of ASN.1 types
and/or values to be excluded in the
generated code. By default, the com-
piler generates code for al types and
values within a specification. This is
generally not asuseful asinincludedi-
rective because most types in a speci-
fication are referenced by other types.
If an attempt is madeto exclude atype
or value referenced by another item,
the directive will be ignored.

<sourceFile> </sourceFile>

source file name

Indicates the given module is con-
tained within the given ASN.1 source
file. Thisis used on IMPORTSs to in-
struct the compiler where to look for
imported definitions. Thisreplacesthe
module.txt file used in previous ver-
sions of the compiler to accomplish
this function.

<pkgName>

C# namespace name

Name of the C# namespace associated
with thismodule. Thiswill cause a C#
using statement to be generated for the

10

Using the Compiler

Name Values Description
module if this nameis not the same as
that of the namespace being compiled.
<namespace> </namespace> namespace hame This is used to specify the name-

space name for the given mod-
ule. By default, Asnlc compiler will
use the “http:// www.obj-sys.com” as
the module namespace. This option
should be used with XML encoding
rule (XML) only. Asnlc compiler will
ignore this option usage with other en-
coding rules.

Production Level

These attributes can be applied at the production level by including them within a <production> section:

Name

Values

Description

<name> </name>

production name

Thisattributeidentifiesthe production
(type) to which this section applies. It
isrequired.

<displayFormat> </displayFormat>

hex

This is used to specify an alternate
stringified representation for binary
data. The hex entry is used with
BIT STRING types. The hex qualifi-
er causes hit strings to be displayed
as hexadecimal digits, regardless of
whether the BIT STRING has named
bits.

<isBiglnteger/>

n/a

Thisisaflag variable (an ‘empty ele-
ment’ in XML terminology) that spec-
ifies that this production will be used
to store an integer larger than the C#
long type (64 bits). A C# Biglnteger
class will be used to hold the value.

This qualifier can be applied to either
an integer or constructed type. If con-
structed, all integer elements within
the constructed type are flagged as big
integers.

<isPLMNidentity/>

n/a

This flag identifies the production
as a PLMNidentity. Any production
so identified will be treated as an
OCTET STRING, regardless of how
the production might be defined in the
ASN.1.

<isTBCDString/>

n/a

Thisitem is used to indicate that val-
ues of this production are to be in-
terpreted as telephony binary coded
strings (TBCD). TBCD strings are not
part of the ASN.1 standards but are a

11

Using the Compiler

Name

Values

Description

widely used encoding format in tele-
phony applications.

Element Level

These attributes can be applied at the element level by including them within a <element> section:

Name

Values

Description

<isBiglnteger/>

n/a

Thisisaflag variable (an ‘empty ele-
ment’ in XML terminology) that spec-
ifies that this production will be used
to store an integer larger than the C#
long type (64 bits). A C# Biglinteger
classwill be used to hold the value.

This qualifier can be applied to either
an integer or constructed type. If con-
structed, all integer elements within
the constructed type are flagged as big
integers.

<isOpenType/>

n/a

This flag variable specifies that this
element will be decoded as an open
type (i.e. skipped). Refer to the sec-
tion on deferred decoding and partial
decoding for further information. Note
that thisvariable can only be used with
BER, CER, or DER encoding rules.

<notUsed/>

n/a

Thisflag variable specifiesthat thisel-
ement will not be used at al in the
generated code. It can only be ap-
plied to optional elements within a
SEQUENCE or SET, or to elements
within a CHOICE. Its purpose is for
production of more compact code by
allowing users to configure out items
that are of no interest to them.

<notUsedSkip/>

n/a

This is the same as <notUsed/> ex-
cept that it tells the compiler to gen-
erate skip functions when necessary.
Skip functions are used for skipping
over values of atype during decoding,
rather than reporting an error if that
type should happen to be encountered
in the encoding.

<notUsedDecode/>

n/a

Similar to the notUsed flag, except
that rather than indicating the element
is not used at all, it indicates the ele-
ment is not used for decoding (i.e. it
is still used for encoding). This can
be useful for reducing the amount of
generated code, when used in con-

12

Using the Compiler

Name

Values

Description

juction with a production level <in-
clude/> (which see). It signals that the
element's type does not require a de-
code function for the sake of this ele-
ment.

<notUsedDecodeSkip/>

n/a

This is the same as <notUsedDe-
code/> except that it tells the compiler
to generate skip functionswhen neces-
sary. Skip functions are used for skip-
ping over values of atype during de-
coding, rather than reporting an error
if that type should happen to be en-
countered in the encoding.

<notUsedEncode/>

n/a

The encoding complement to <no-
tUsedDecode/>

<skip/>

n/a

Deprecated. Thisis now equivalent to
<notUsedDecode/>

ASN.1 Standard Revisions

The - asnst d option alows you to choose the revision of the ASN.1 standards you want to generate code for. This
section explains the differences for these options.

-asnstd x680

» Thisisthe default option.

» Thisoption indicates ASN1C should follow the latest revision of the X.680 and X.690 series that is supported by

the tool.

-asnstd x680-2021

» Follows the 2021 revision of the X.680/X.690 series.

» PER encoding of BIT STRINGs with contents constraints. The BIT STRING is padded to a multiple of 8 hits for

aligned PER only.

» JER encoding of BIT STRING and OCTET STRING with contents constraints: an encoder's option using a JSON
object with a'containing' key was added in this revision. The encoder will use this encoder's option and the decoder
will decode values encoded using either option.

-asnstd x680-2015

» Followsthe 2015 revision of the X.680/X.690 series.

* PER encoding of BIT STRINGs with contents constraints: There is no padding of the BIT STRING value.

-asnstd x680-2008

» Followsthe 2008 revision of the X.680/X.690 series.

13

Using the Compiler

* PER encoding of BIT STRINGs with contents constraints: The BIT STRING is padded to a multiple of 8 hits for
both aligned and unaligned PER.

-asnstd mixed

» Used when source files contain modules with both X.208- and X.680-based syntax.

-asnstd x208

* This option supports the deprecated X.208 and X.209 standards.

» Allows use of type 'ANY" (not part of X.680).

» Allows unnamed fieldsin SEQUENCE, SET, and CHOICE constructs (not allowed by X.680).

* Allows use of ROSE OPERATION and ERROR macros and SNMP OBJECTTY PE macros (macros are not a
feature of X.680).

Compiler Error Reporting

Errors that can occur when generating source code from an ASN.1 source specification take two forms; syntax errors
and semantics errors.

Syntax errors are errors in the ASN.1 source specification itself. These occur when the rules specified in the ASN.1
grammar are not followed. ASN1C will flag these types of errors with the error message ‘ Syntax Error’ and abort
compilation on the source file. The offending line number will be provided. The user can re-run the compilation with
the*-I’ flag specified to seethelineslisted asthey are parsed. This can be quite helpful in tracking down asyntax error.

The most common types of syntax errors are as follows:

* Invalid case onidentifiers: module name must begin with an uppercase | etter, productions (types) must begin with an
uppercase |etter, and element names within constructors (SEQUENCE, SET, CHOICE) must begin with lowercase
letters.

 Elements within constructors not properly delimited with commas: either a comma is omitted at the end of an
element declaration, or an extracomma s added at the end of an element declaration before the closing brace.

* Invalid specia characters: only letters, numbers, and the hyphen (-) character are allowed. Programmers tend to
like to use the underscore character () in identifiers. Thisis not allowed in ASN.1. Conversaly, C or C# does not
alow hyphensin identifiers. To get around this problem, ASN1C converts al hyphensin an ASN.1 specification
to underscore charactersin the generated code.

Semantics errors occur on the compiler back-end as the code is being generated. In this case, parsing was successful,
but the compiler does not know how to generate the code. These errors are flagged by embedding error messages
directly in the generated code. The error messages always begin with an identifier with the prefix * % ASN-*,. A search
can be done for this string in order to find the locations of the errors. A single error message is output to stderr after
compilation on the unit is complete to indicate error conditions exist.

14

Chapter 3. ASN1C GUI Users Guide
Quick Start

This section demonstrates running ACGUI, activating alicense key, creating a new ASN.1 schema, and compiling it
to C for BER data. The processis similar for other languages.

Activating a License Key

First, start ACGUI. The Enter License Key window may be displayed to activate a license key.

D ASN.1 Editor Settings X
License l General Fonts/Colors

License Type
* Key (File

License Key:

Deactivate

[~ Check-in license on exit

License file not found

If you are using a proxy server, enter it below (myproxyhost:8765):

HTTP_PROXY:

OK Cancel

If the Enter License Key window is displayed and it is not showing a current license key, right-click in the text box
and paste the accurate license key. Then click Activate to unlock ASN1C.

15

ASN1C GUI Users Guide

In some cases, the Enter License Key window is displayed and showing acurrent license key. In these cases, itislikely
that the key being shown is expired. First deactivate the current key by clicking Deactivate. Then, right-click in the

text box and paste the current license key, and click Activate to unlock ASN1C.

If an osydlic.txt license file is being used instead of a key, and the osydlic.txt isin alocation where the GUI does not

look, click Import to find the file and use it to unlock ASN1C.

If Skip is clicked within the Enter License Key window, the features of the GUI can be explored, but code cannot

be generated.

If anew license key must be activated and the current one is till valid (for example, if ASN1C is purchased before
the evaluation key expires), the existing license must be deactivated first. This deactivation can be done from the GUI
by navigating to Tools > Options and then selecting the License tab. The ASN.1 Editor Settings window is displayed.

ASN.1 Editor Settings X
d 9

License w General Fonts/Colors

License Type

& Key C File

License Key:

PzeTKOWBtWKSOuclbDenMP2vabG1d +vuMwiHdxIUIBwPvjc3IJmMNiwE
xQG2EZxziE4uVUPIZgcYkf3z)tS + MQdLFIQ+gd GIFPCAKFrC 5 80WxRX
dWfuplom+ORLgfzZWWFoSD9cmAG+eg=

Activate Deactivate

[v Check-in license on exit

If you are using a proxy server, enter it below (myproxyhost:8765):

HTTP_PROXY:

Restore Defaults QK Cancel

Click Deactivate to deactivate the existing license. Then click OK. Next, navigate to Tools > Options > License tab

again to activate the new key.

16

ASN1C GUI Users Guide

The "Check-in license on exit" check box is used to indicate that the license should be immediately returned to the
license pool upon exit making it available for other users on different machines. If not checked, the machine on which
it is being used will continue to hold it until it times out (typically in 24 hours). If you will only be using ASN1C on
a single machine most of the time, it is better to keep it unchecked as it will lead to faster startups since the Internet
check will not need to be done each time.

The HTTP PROXY box can be used if you are using ASN1C on a machine that requires I nternet requests go through
aproxy server.

Creating a New Project

Oncethe ASN1C program has been activated, anew project can be created to store all of the settings. To do this, select
Project > New Project from the menu. The ASN1C Settings window is displayed.

D ASNIC Settings X
9

Language] Output I Eunction Generation | Constraints and Debugging | Code Modifications |
Application Language Type
* None LG " Cas C Cc# Java Python Go

I~ BEF ™ CER ™ DEf I~ PER ™ APER ¥ UPES " ISON & XEF ™ XML I~ AVN I QFR [~ COE

ASN.1 Standard
® X 680-senes - latest, in-force ASN.1 standards X.680-series - 2008 ASN.1 standards
X.680-senes - 2021 ASN.1 standards X.208 - earlier, withdrawn standard

" X.6B0-series - 2015 ASN.1 standards

Additional Translations

™ Generate HTML files for input ASN.1 I™ Generate equivalent XML schema [~ Pretty-print ASN.1

Input Options

[Perform a lax syntax check I~ Allow ambiguous tags

0K | Cancel

The Language tab is displayed by default. In the Application Language Type section, select C. In the Encoding Rules
section, select BER. Finally, on the Output tab, in the Output Directory text box, enter or browse to the location
where the generated files should be saved. When finished defining the project settings, click OK. These settings can
be changed at any time by selecting Project > Project Settings from the menu.

Next, anew schemafileis created for the project. Click New in thetoolbar or navigate to File > New SchemaFile. A
dialog box is displayed to define a name for the new file. Once entered, the file is added to the project window under
the "Schema/ASN.1 files' heading and its empty contents are shown in the editor.

17

ASN1C GUI Users Guide

File Edit Project Tools Help
O x vV @ »
%l
New Open Remove Savefle Validate compie Previous Error MextError
Project B [test.asn* B | | SN Tree B x
Untitled || b tdodule DEFIMITIONS 1= BEGIN
4 Schema/ASN files 2
testasn” JEND

Include Directories

Configuration files

: Generated ltems
Error Log 8 X
File Line Column Message

The schema is then written between the "DEFINITIONS ::= BEGIN" and "END" statements in the file. For this
exampl e, the following can be entered:

MySequence ::= SEQUENCE ({
i ngredi ent PrintableString,
count | NTEGER,
units PrintableString

Once the schemais created, click Validate to perform a check for errors.
Note

If the new schema file has not yet been saved, ACGUI asks if it should be. Once saved, ACGUI validates
thefile.

If the schema has errors, they are displayed in the log at the bottom of the ACGUI window.

Once the project has been configured, click Compile to generate code according to the project settings. If compliation
issuccessful, alist of generated files, sorted according to the selected language, is displayed under the Generated Items
heading in the Project pane. If compilation is not successful, any errors are displayed in the Error Log.

18

ASN1C GUI Users Guide

File Edit Project Tools Help
B x v @
Q =] 5 @ 8
New Open Remove Savefie Validate compile PreviousError NextError
Project B[test.asn 6 ‘ | s Tree & x
C/work/asnlc/testacpral || q hyhiodule DEFINITIONS := BEGIN
4 Schema/ASM1 files 2 4t MyModule
test.asn 3 MySequence := SEQUENCE { 4 IE Types
Include Directories 4 ingredient PrintableString, 4 B MySequence
Configuration files 5 CUunIINTEGER . ® ingredient
4 Generated Items 6 units PrintableString & count
4 C/Cs files ! * units
MyMadule.c 8
MyModuleh BEMND
MyModuleDec.c
MyModuleEnc.c
rtkey.h
C# files
Java files
KSD files
Text Browser
Error Log J X
File Line Column Message
Q1 Parsing ASN.1 definitions..
3 2 MyModuleh Writing C type definitions to file MyModule.h.
@ 3 MyModuleEnc.c Writing C encode functions to file MyModuleEnc.c.
Q 4 MyModuleDec.c Writing C decode functions to file MyModuleDec.c.
3 5 MyModule Writing C global variables to file MyMedule.c.
Q6 Code was successfully generated in C:/work/asnlc

At thistime, project settings can be changed and schema files can be edited as needed.

Creating a Project

Since there are alarge number of options available in the code generation process, ACGUI allows settings to be saved
in project files for reuse. Project files can be created, opened, and saved from the Project menu. If no project file is
explicitly used, adummy project isimplicitly created and can be saved to afile at alater time.

Creating a New Project

To create anew project file, select Project > New Project from the menu. The ASN1C Settings window is displayed.

The ASN1C Settings window contains standard tabs for Language, Output, Function Generation, Constraints and
Debugging, and Code Moadifications. Additional tabs are loaded once an Application Language Type is selected on
the Language tab.

Once all project settings have been defined, click OK.
Note

Details regarding the tabs and contents within the ASN1C Settings window can be found in the Interface
topic of this guide.

19

ASN1C GUI Users Guide

Editing a Project
A project's settings can be changed at any time by navigating to Project > Project Settings.
Opening a Project

To open an existing project, navigate to Project > Open Project. Usethe File Explorer window to navigateto the desired
project and click Open. Recent projects can be accessed by navigating to Project > Recent projects and selecting the
desired project from the list.

Once opened, project assets, such as ASN.1 schemas and generated source files, are visible in the Project pane.

Saving a Project

To save a project, havigate to Project > Save Project or Project > Save Project As.

Editing Schemas

The central area of the ACGUI window is dedicated to editing ASN.1 schema definition files.

Note

Additional information on the schema Editor can be found in the Interface topic of this guide.

20

ASN1C GUI Users Guide

UsefulDefinitions.asn | InformationFramework. asn | ACSE-1.asn |
'I F
2 UsetulDefintions {joint-iso-itu-t ds(b) module (1) usefulDefintians(0) 3}
3 DEFINITIONS =
4 BEGIN

m

[et W P |

9
10
11 1D = OBJECT IDENTIFIER
12
13 ds 1D 2= {joint-iso-itu-t ds(5)}
14
15
16 module D :={ds 1}
17
18 zerviceElement 1D 2= {ds 2}
19
20 applicationContext 1D 2= {ds 3}
21
22 attribute Type ID = {ds 4}
23
24 attributeSyntax 1D = {ds 5t
25
26 ohjectClass ID = {ds 6}
27
28
29 algorithem (D = {ds 8}
30
31 ahstractSyntax D o= {ds 9}

AR dsalneratinnalAttribote M =

Text Browser

Creating a New Schema File

To create anew schemafile, click New inthetoolbar or navigateto File > New SchemalFile. A tab titled 'Untitledl.asn’
isdisplayed in the central editing area of the GUI.

Define the schema by copy/pasting text or by manually entering text between the "DEFINITIONS ::= BEGIN" and
"END" statements in the file. When finished, click Save file in the toolbar or navigate to File > Save file or File >
Save file as. Click Validate to check for proper syntax and to confirm that no errors are present. Upon validation, a
success or failure messageis returned in the Error Log.

Editing a Schema File

To open an existing schemafile for edit, click Open in the toolbar or navigate to File > Open File. Thefileis added to
the project and is displayed as atab in the central editing area. A schemafilethat is already included in a project can
be opened by selecting the file name from the list of Schema/ASN.1 filesin the Project pane.

At any point during editing, the schema can be saved and validated.

21

ASN1C GUI Users Guide

Deleting a Schema File

To remove aschemafile from aproject, right-click on the file name from the list of Schema/ASN.1 filesin the Project
pane and select Remove. Or, simply select the file within the Schema/ASN.1 fileslist and click Removein the toolbar.

Compiling
Onceaproject iscreated and schemas are added, the schemas may be compiled to generate source code and related files.

Note

A target language must be selected for the project prior to compiling. To set the target language, navigate to
Project > Project Settings > Output tab, and make a selection from the Application Language Type section.

Click Compile from the toolbar or navigate to Tools > Compile. Upon compilation, a success or failure message is
returned in the Error Log.

Note

Upon clicking Compile, if any files have unsaved changes, a dialog box is displayed to prompt the user to
savethefiles.

After compilation, changes can continue to be made to the schema and to the project settings. Recompilation can be
done as needed.

On Mac systems if Go code is being generated, sometimes an error message is displayed saying the "go mod init"
command failed. Thiserror message is caused by the location of the "go" command not being inthe PATH that isused

for GUI applications (which can be different from the PATH used for command shell sessions). This problem can be
fixed by executing the following command (as an example) from a Termina session on the Mac and then rebooting:

sudo launchct!l config user path /usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbhin

For this example /usr/local/bin is the location of the "go" command, and the other directories are the other locations
that need to be in the PATH. The command will need to be adjusted accordingly for specific Mac systems.

Interface

The ACGUI interface is comprised of five parts: Editor, Project window, ASN.1 Tree window, Error Log window,
and Project Settings.

22

ASN1C GUI Users Guide

Project

File Edit Project Tools Help

O x B ¢

New Open Remove Savefle Validate compile Previous Error Next Error

E €« »

2

4 Schema/ASN files
ACSE-Lasn
InformationFramewerk.asn
UsefulDefinitions.asn

Include Directories
Configuration files
> Generated ltems

Untitled

usefulbefinitions.asn) | informatonFramework.asn £ | acse-tasn [|

1

2 UsefulDefinitions {joint-iso-itu-t ds(5) module(l) usefulDefinitions(0) 3}

3 DEFINITIONS 1=
4 BEGIN

5
B
7
8
9

111D = OBJECT IDENTIFIER
13 ds 1D == {jointiso-itu-t ds(5)}
14

18
16 module 1D = {ds 1}
17

18 serviceElementID ;= {ds 2}
19

20 applicationContext 1D = {ds 3}
21

22 attributeType 1D 2= {ds 4}
23

24 attrilbiuteSyntax 1D = {ds 5}
25

26 ohjectClass D= {ds 6}

27

28

28 algorithrn 1D = {ds 8}

30

31 ahstractSyntax D = {ds 9}
32

33

34
AR dealneratinnalAtrinute I =

ASN.1Tree

> T ACSE-L

4 % InformationFramework
> & Types
4 % Values

id-at-objectClass

> H: Information objects
> H: Information object sets
» 1 UsefulDefinitions

Text | Browser

Error Log

id-at-aliasedEntryName

id-mr-distinguishedNameMa...
id-mr-objectldentifierMatch
» % Information Object Classes

File Line Column Message

Q1 Parsing ASN.1 definitions.
@2 Validation was successful

Editor

The central part of the ACGUI window is the schema Editor. From here, schema files can be viewed and edited.

To begin editing an ASN.1 schema, create or open aschemafile. A new schemafile can be opened by clicking New in
the toolbar or by navigating to File > New Schema File. An existing schemafile can be accessed via the Open button
in the toolbar or navigating to File > Open File. The fileis added to the current project and shown in the Editor.

23

ASN1C GUI Users Guide

UsefulDefinitions.asn | InformationFramework. asn | ACSE-1.asn |
'I F
2 UsetulDefintions {joint-iso-itu-t ds(b) module (1) usefulDefintians(0) 3}
3 DEFINITIONS =
4 BEGIN

m

[et W P |

9
10
11 1D = OBJECT IDENTIFIER
12
13 ds 1D 2= {joint-iso-itu-t ds(5)}
14
15
16 module D :={ds 1}
17
18 zerviceElement 1D 2= {ds 2}
19
20 applicationContext 1D 2= {ds 3}
21
22 attribute Type ID = {ds 4}
23
24 attributeSyntax 1D = {ds 5t
25
26 ohjectClass ID = {ds 6}
27
28
29 algorithem (D = {ds 8}
30
31 ahstractSyntax D o= {ds 9}

AR dsalneratinnalAttribote M =

Text Browser

The Editor window is also used to display a schema browser for navigating within a validated schema. To display the
browser after validating a schema, click on an item in the ASN.1 Tree window. The browser displays a hyperlinked
version of the schema, centered on the definition of the selected item. Click the names of other defined types in the
browser to show their definitions.

By default, schema documents are displayed as tabs in the Editor. The Text and Browser tabs at the bottom of the
window are for schema editing and hyperlinked schema browsing, respectively. Schemafiles currently open for edit
are displayed as tabs at the top of the Text tab.

Project Window

The Project window allows the user to interact with project assets, and contains the following components. Schema/
ASN.1 files, Include Directories, Configuration files and Generated Items.

24

ASN1C GUI Users Guide

Project &

Untitled

4 Schema/ASM. files
ACSE-1.asn
InformationFramework.asn
UzefulDefinitions.asn

Include Directories
Configuration files
4 (Generated ltems
+ CfC++ files
CZ files
Java files
K5D files

The Project window contains the following sections:
Schema/ASN.1 files This section lists the files that contain the current project's ASN.1 schema definitions.

Include Directories This section lists the directories containing auxiliary ASN.1 schemafiles. The current
project's schemamay import definitions from modul esdefined in an included directory.

Configuration file This section liststhe ASN1C compiler configuration file currently in use.
Generated Items This section lists the files generated by the compiler, separated by target language.

Click onaschemaor configuration filein the Project window to open that filein the Editor. Right-click on any schema
file, include directory, or configuration file to easily add another or remove that particular asset from the project.

Right-clicking on the Schema/ASN.1 files heading also displays options for 'Find in Files and 'Replace in Files.'
Selecting 'Find in Files displaysthe Find in Files window, which provides users with the ability to enter any text to be

located in either al schemasin the project, or only the schemas currently open in the editor. Once the Find parameters
have been defined, click Find All to be presented with alist of filesthat contain the search text.

D Find In Files X
Find text: cell -
Parameters

Regular Expression
lgnore Case

Whole Words

Leok in: All Sehemas in Project -

Find All Close

Click an entry within the results list to display the text in the editor.

25

ASN1C GUI Users Guide

D search Results X

~ |/home/ec2-user/vanessa/asnlc-v77A/specs/camel/ca...
670 cellGloballd

578 --The cellGloballd shall contain a Cell Glebal
39 cellGloballdOrServiceArealdOrLAl [0] Cell
-- cellGloballdOrService ArealdOrLAl shall cc
-- sai-Present indicates that the cellGloballd
--The 3GPP TS5 29.078 standard, about cellC
9 -- sai-Present indicates that the cellGloball
2405 -- sai-Present indicates that the cellGloballd
24 - cellGloballdOrServiceArealdFixedLeng
2417 --This coding would disrupt the backward co
3216 operationMotCancellable (2)

Cad

Ao U)X p—

Selecting 'Replace in Files' displays the Replace in Files window, which provides users with the ability to enter any
text to be located and replaced in either all schemas in the project, or only the schemas currently open in the editor.
Once the Find and Replace parameters have been defined, click Replace All to be presented with a list of files that
include the word to be changed.

D Replace In Files X
Eind text: cell -
Replace With cellular -
Parameters

Regular Expression
lgnore Case

Whole Words

Look in: All Schemas in Project -

Replace All | Close |

Click an entry within the results list to display the text in the editor, and if desired, deselect any check box next to
an entry in the results list to prevent the replacement from happening on that result. Click Replace to perform the
word replacement.

26

ASN1C GUI Users Guide

D search Results X

= ||| /homefec2-user/vanessa/asnlc-vTTA/specs/camel...

] 670 cellGlaballd
] 678 --The cellGloballd shall contain a Cell Gl
] 1293 cellGloballdOrService ArealdOrLAl [0]
] 1402 -- cellGloballdOrService ArealdOrLAl sha
] 1405 -- sai-Present indicates that the cellGlob
] 2396 --The 3GPP T5 29.078 standard, about ¢
] 2399 -- sai-Present indicates that the cellGlo
] 2405 -- sai-Present indicates that the cellGlob
] 2410 -- cellGloballdOrService ArealdFixedl
] 2417 -- This coding would disrupt the backwar
] 3216 operationMNotCancellable (2)
Replace

ASN.1 Tree Window

Once a schema has been validated or compiled in ACGUI, the ASN.1 Tree window provides an interactive view of
the ASN.1 typesdefined init.

ASM,1Tree & X

&

2= ACSE-1
- InformationFramework
» B Types
- Values
¥ id-at-aliazedEntryMame
% id-at-ohjectClass
id-mr-distinguishedMameMa...
id-mr-objectldentifierMatch
» B Information Object Classes

[

B Information objects
» E: Information object sets
» B UsefulDefinitions

At the top level of the tree, the modules of the schema are shown. Each of these modules can be expanded to reveal
branches for the types, values, information objects, etc. defined within. Click on any node of the tree to show the
relevant ASN.1 definition in a built-in browser in the Editor window.

Error Log Window

The Error Log window displays messages related to schema validation and compilation. Whenever a schemais suc-
cessfully validated or compiled, the Error Log reports a success. If an error occurs, an error message is displayed.

27

ASN1C GUI Users Guide

Error Log g %

Clear Save Log

File Line Column Message

Parsing ASN.L definitions..
@2 Validation was successful

In many cases, an error is associated with a particular portion of the schema being compiled. Click on an error to
open the schema editor at the location in which the error occurred. If more than one error is reported, clicking Next
Error and Previous Error in the toolbar moves the Editor window to the part of the schemawhere the next or previous
error occurred.

When the reported errors are no longer needed, click Clear in the Error Log window to remove them from display.

Project Settings

The Project Settings window is where details regarding the project, such as encoding rules, target language, and code
features to generate are modified. The window contains the following tabs: Language, Output, Function Generation,
Constraints and Debugging, Code Modifications, language-specific code modifications, and Build Options.

Language tab

The Language tab contains options for selecting atarget language, encoding rules, ASN.1 Standards, translation, and
input options.

28

ASNI1C GUI Users Guide

D ASNIC Settings

x
Language | Output | Function Generation Constraints and Debugging I Code Modifications I Ccs l Build Options l
Application Language Type
(" None CC C C++ ® Cz " Java (" Python Go
Encoding Rules
TBER [CER I DER [PR [APER M UPER [JSON W XER T xML I AVN [T QR [~ COER
ASN,1 Standard
(¢ X 680-senies - latest, in-force ASN.1 standards (" X.680-series - 2008 ASN.1 standards
(" X.680-series - 2021 ASN.1 standards (" X.208 - earlier, withdrawn standard
(" X.680-series - 2015 ASN.1 standards
—Additional Translations
™ Generate HTML files for input ASN.1 I™ Generate equivalent XML schema ™ Pretty-print ASN.1
Input Optiens
™ Perform a lax syntax check I Allow ambiguous tags
ok | cancel
The Language tab contains the following sections:
Application Language Type This section provides users with the ability to define the target language for the

project. A target language must be selected in order to compile a schema.

Depending on the target language selected, additional options are displayed
within the Output tab.

For C or C++ target languages, the C/C++ Output Options section controls how
generated code is distributed across source files.

29

ASN1C GUI Users Guide

Encoding Rules
ASN.1 Standard
Additional Trandations

Input Options

Output tab

C/C++Output Options

Defaultinteger type: [int32 <

Maxines per fle: |

Binaris Drectory |

J
Objectdrectory |] [romse

J

J

For C#, the C# Code Organization section controls how generated codeis dis-
tributed across source files and how files are organized into directories.

C# Code Organization
[output code to directories based on module names

Code generation option: |One .cs file per type ™ | File name:

Binaries Directory | | Browse

Libraries Directory | | Browse

For Java, the Java Code Organization section controls how generated code
should be organized into directories based on the ASN.1 module for which they
were generated. Alternatively, generated files are placed directly into the output
directory.

Java Code Organization

[output code to directories based on module names

Clazs directory Browse

This section provides users with the ability to define one or more encoding rule
sets to be selected for the generated code.

This section provides users with the ability to apply current or previousy-de-
fined ASN.1 standards to the generated code.

This section provides users with the ability to define the options for generating
transformed versions of the input schema, such as HTML or pretty-printed.

This section provides users with the ability to define how strict the compiler is
when parsing ASN.1 schema.

The Output tab contains options for selecting encoding rules, as well as output and project directories.

30

ASNI1C GUI Users Guide

QD ASNIC Settings

Language Qutput | Function Generation | Constraints and Debugging | Code Modifications I C/Cee Build Options |

Output Directory | Browge

Project Directory I Browse

C/C++ Qutput Options

(® Qutput code to .c/.h files based on module names

(" Qutput all code to a single .c/.h file | pp h

" Output each generated function to its own source file

Max lines per file: |

Object directory I Browse

Libraries Directory I Browse

Binanes Directory | Browse
0K | Cancel

The Output tab contains the following sections:

Output Directory and Project Di- This section provides userswith the ability to definein which directory the code

rectory output and/or project should be stored.

Language-specific Output Options This section provides users with the ability to define additional output options
specific to the language type chosen on the Language tab, as well asthe ability

to define additional directories.

Function Generation tab

The Function Generation tab provides settings for the functionality to include in generated code.

31

ASN1C GUI Users Guide

@ ASNIC Settings

Language | Output Function Generation
Generated Function Types

[Encoding v Initialization

lv Decoding ¥ Memory Free

[~ Comparison [~ Named Bit Macros

I Copy

[~ Stream

Specify PDU Types

(¢ Default (unreferenced types)

Constraints and Debugging | Code Modifications | C/Ce+ Build Options

Printing Functions

™ Stangdard Output [Streaming [String
Print Format ® Bracetext " Details
Al (" Selected |

Sample Program Generation

[~ Specify a PDU for the sample programs I
[~ Generate test code to populate data structures with random data at run-time
[~ Generate test code to populate data structures with random hard-coded values at compile time
[” Generate reader sample program [~ Generate writer sample program

[~ Generate client sample grogram ™ Generate server sample program

[~ Generate program from template |

0K Cancel

The Function Generation tab contains the following sections:

Generated Function Types

Specify PDU Types

Sample Program Generation

Language-specific Functions

This section provides users with the ability to define granular control of which
functionsto generate. The printing functionsallow for various printing schemes
to be generated, such as print-to-string and print-to-standard-output, and how
the printed data should be formatted.

This section provides userswith the ability to define which productionsto select
as PDUs.

This section provides users with the ability to define the generation of simple
encoding and decoding programs, which demonstrate using the generated code.
Additionally, the sample writer program can optionally encode randomly-gen-
erated test data.

Depending on the target language sel ected, additional options may be displayed
within this section of the Function Generation tab.

For C and C++, additiona functions for memory management and macros for
dealing with named bitsin BIT STRINGs can be generated. Initialization func-
tions are generated by default, but may be turned off.

32

ASN1C GUI Users Guide

C/C++ Generated Functions
Generate Initialization Functions
D Generate Memory Free Functions

[[] Generate Named Bit Macros

For Java, get and set methods can be generated for members of generated class-
es. It is also possible to generate methods that can fetch certain types of meta-
data (for example, if an element is optional). A similar option exists for C#.

Java Function Cptions
[] Generate getter and setter methods
[Generate metadata methods

Constraints and Debugging tab

The Constraints and Debugging tab holds settings related to constraint handling, event handling, and logging in gen-

erated code.

@ ASNIC Settings

Language | Output Function Generation Constraints and Debugging Code Modifications
Constraints
[” Do not generate code supporting contents constraints
™ Do not generate constraint checks
[Enable strict constraint checks
[~ Generate code to handle table constraints

[Interpret size constraints strictly

Debugging and Event Handling

[Generate code to invoke event handler callback functions

[~ Generate code to invoke raw event handler callback functions
[” Do not generate type structures

™ Add tracing diagnostic messages to code

[~ Enable output of compilation warning messages

Build Options

0K Cancel
The Constraints and Debugging tab contains the following sections:
Constraints This section provides users with the ability to add or remove various types of

restriction checks from the generated code.

33

ASN1C GUI Users Guide

Debugging and Event Handling This section provides users with the ability to add debug tracing and event
hooks. In addition to enabling event callbacks, generation of type structures
can also be disabled, in which case generated decode functionality ssimply calls
user-created event handlers and does not perform its own decoding operation.

Code Modifications tab
The Code Modifications tab contains a number of options for generating simplified code.
D ASNIC Settings »

Language I Output | Function Generation | Constraints and Debugging Code Modifications | C/C++ | Build Options
Space Optimizations
» Generate compact code
[T Do not generate code to save/restore unknown extensions
[~ Do not generate types for items embedded in information pbjects
[~ Donot generate XML namespaces for ASN.1 modules

[~ Generate short form of type names

Other Options

[v Automatically create unigue names for duplicate items
[~ Do not add date stamp to generated files

[Generate code for dependent type definitions

[~ Disable special treatment for BCD/TBCD OCTET STRING

[~ Disable generation of the asn1c command comment

0K Cancel

The Code Modifications tab contains the following sections:

Space Optimizations This section provides users with the ability to remove unwanted or unneeded function-
aity and shorten the names of generated types.

Other Options This section provides users with the ability to define several miscellaneous settings,
including the option to generate code for types that have been imported into the current
schema

Language-specific tab

Additional code modification options that are language-specific are shown in a separate tab next to the Code Modifi-
cationstab. Thelabel and contents of this tab changes based on the language selected within the Output tab.

For C/C++, the tab is displayed as follows, and includes several settings for adjusting how ASN.1 types are mapped
to native C/C++ types:

ASN1C GUI Users Guide

C/C++ Code Modifications

[add & header guard prefix

[C] Add a C++ namespace

SEQUEMCE OF (SET OF use: @ default) linkedlist) dynamicarray () static array
[7] Generate static member variables in choice constructs
[Use enumerated types instead of integers

[7] Generate fully qualified enumerated constants

[] Disable fixed sizing for small bit strings

[] suppart indefinite PER lengths

[Pad PER BIT STRING-contained values

[7] Generate code compatible with 64-bit architectures

[Generate code that uses C++11 features induding STL

For C#, the tab is displayed as follows, and includes settings to alow for manipulating the namespace into which
code is generated:

Note

The Javatab contains similar options.

C# Code Modifications
[specify namespace

[specify namespace prefix

Build Options tab

When atarget language other than None is selected, an additional Build Options tab is displayed to provide language
environment-specific settings for generating makefiles and build scripts.

For C or C++, thetab is asfollows;

35

ASN1C GUI Users Guide

[] Generate Visual Studio Project [] Generate Makefiles
5 2019 ndows (nmake)
5 2017 GNU
5 2015
V5 2013
V5 2012
VS 201i
VS 2008 C/C++ Compile Optimization
VS 2005 (@) Default

O Space Oplimization
(") Speed (Time) Optimization

[Link applications using shared libraries

Link applications against 64-bit libraries

A makefile can be generated in either Windows or GNU format. For Windows, a Visual Studio project can also
be generated. Under the Build Libraries section, which generates the build script to build a library rather than an
executable, the desired variety of library can be selected.

The C/C++ Compile Optimization section allows for defining whether Space or Time optimization qualifiers should
be added to the C compilation command-line in the makefile.

For C#, the tab is as follows:

36

ASN1C GUI Users Guide

Build Optians
] Generate a list of .cs files (in <modulename=.mk)
[] Generate a makefile
] Generate a visual Studio Project
VS 2019
VS 2017

VS 2015

[strongly named key file:

For C#, amakefile or Visual Studio project can be created, optionally including a*.mk file listing the files generated.
An option to specify a strongly named key file is also available.

For Java, the tab is as follows:

Build Options

[Generate a list of .java files {in <modulename =.mk)
[[] Generate an Ant build script

[Generate a batch file or shell script

Like C#, Java can aso provide a*.mk generated file list, aswell as an Ant build script and a batch or shell script.

For Python, the tab is as follows:

Build Options

[create a batch file or shell script to generate Python code

For Python, ASN1C can create a batch file (Windows) or shell script (non-Windows) that generates the Python code
as set up by the GUI settings.

For Go, thetab is asfollows:

37

ASN1C GUI Users Guide

Build Options
[create a makefile to generate Go code
[] create a 150N file with random test data

[] bon't create a main.go file

The Go code generator can create a makefile to generate and build Go code. The generator can also create a JSON

file with random test data. Additionally, an option for the generator not to create a main.go file (for instance, if there
already is onethat has been modified) is available.

38

Chapter 4. Generated C# Source Code
Overview

A separate C# source file with extension ‘.cs' is generated for each production encountered within an ASN.1 source
file. Every ASN.1 type is mapped to a C# class. This is true even at the lowest levels — types such as BOOLEAN,
INTEGER, and NULL all have wrapper classes.

The following items may be present in a generated C# file:
e Using statements

» Namespace specification

» Classdeclaration

A tag constant object declaration

* Public member variables

» Constructors

 Public Decode() method

 Public Encode() method

* Other methods

 Inner SAX Handler class (XER only)

Additional specialized items may be present as well depending on the base type of the target production. These spe-
cialized items are discussed in the sections on ASN.1 to C# mappings for the various ASN.1 types.

A complete generated C# source file for the * EmployeeNumber’ production within the production within the ASN.1
sample file ‘employee.asn’ can be found on the following page. The ASN.1 production from which this file was
generated is as follows:

Enpl oyeeNunber ::= [APPLI CATION 2] | MPLICIT | NTEGER
The generated code is as follows:

usi ng System
usi ng Com Qbj sys. Asnl. Runti e;

nanespace Test {
public class Enpl oyeeNunber : Asnllnteger ({

public new readonly static AsnlTag _TAG =
new AsnlTag (AsnlTag. APPL, AsnlTag.PRIM 2);

public Enpl oyeeNurmber () : base()

{
}

public Enpl oyeeNumber (long value_) : base(val ue_)

39

Generated C# Source Code Overview

{
}

public override void Decode

(AsnlBer DecodeBuffer buffer, bool explicitTagging, int inplicitLength)

{
int Ilen = (explicitTaggi ng) ?
Mat chTag (buffer, _TAG : inplicitLength;
base. Decode (buffer, false, |llen);
}

public override int Encode
(AsnlBer EncodeBuffer buffer, bool explicitTagging)

{
int _aal = base.Encode (buffer, false);
if (explicitTagging) {
_aal += buffer.EncodeTagAndLength (_TAG _aal);
}
return (_aal);
}

}

The following sections discuss the various sections of the generated C# sourcefile.

Namespace Specification

The namespace specification isthe second item in the file and is declared using the ‘ namespace’ keyword. By defaullt,
thisis set to the name of the ASN.1 module that is being compiled. However, this can be modified by using the -nspfx
and —namespace command line options. The —nspfx option adds the specified prefix before the module name. For
example, if an ASN.1 module named ' Employee’ isbeing compiled and ‘ -nspfx test.’ is specified on the command line,
the namespace name in the generated source fileswould be ‘test. Employee’ . The —-namespace switch takes this a step
further. It allows specification of the full namespace name. In the sample specification above, ‘-nspfx sample ber.’
was specified on the compiler command line.

Standard using statements are added for the ASN1C C# run-time classes and C# utility classes. Using statements may
also be added for items imported from other ASN.1 modulesif they don’t exist within the namespace being generated.

Class Declaration

Next comes the class declaration. It is of the following form:
public class <ProdNane> : <BaseC ass>

<ProdName> is the name of the production in the ASN.1 source file. <BaseClass> is a class from which the type is
derived. This can either be a standard run-time or compiler-generated class. In our example, the EmployeeNumber
isan INTEGER, so we can directly inherit the Asnlinteger run-time base class. If we had a declaration such as the
following:

Enpl oyeeSSNumber :: = [APPLI CATI ON 22] Enpl oyeeNumnber

40

Generated C# Source Code Overview

Our EmployeeSSNumber class would be inherited from the compiler-generated EmployeeNumber class as follows:
public class Enpl oyeeSSNunmber : Enpl oyeeNunber

Note: the preceding exampleisnot trueif —.compact isspecified. Inthat case, al intermediate classeswould be removed
so EmployeeSSNumber would inherit Asnlinteger asin thefirst case.

Tag Constant

The next item in the generated source file is atag constant. This is only generated if the production is tagged. The
runtime class AsnlTag is used for this constant. This class contains methods for operating on ASN.1 tag values. In
the sample above, the [APPLICATION 2] tag that is present in the ASN.1 production definition is represented by the
generated tag constant.

Public Member Variables

The next section of the filewould be public member variables. In our example above, no member variables are present.
Thisisbecause INTEGER isaprimitive type, so the member variablein which theinteger valueis stored can be found
in the Asnlinteger base class from which this class is derived. Thisistrue for al primitive types — the value will be
contained within the run-time base class.

Constructed typeswill contain public member variables to represent the elements that make up the type. For example,
the following SEQUENCE production:

Name ::= [APPLI CATION 1] I MPLICI T SEQUENCE ({
gi venNanel A5Stri ng,
initial 1A5String,
fam | yNamel A5Stri ng

}

will result in the following public member variables being added to the generated class:

public Asnll A5String gi venNane;
public Asnll A5String initial;
public Asnll A5String fam | yName;

Note that the member variables are public. They were declared this way to make access easier. A trade-off existed be-
tween ease-of-use and secure encapsul ation. The ease-of -use approach was chosen because it was felt that the repeated
use of get/set methods within deeply nested structures would be too clumsy and bulky in most applications. Therefore,
the variables were made public to make the encapsulated values easier to set and retrieve. Consistency checks have
been added in some methods to make sure values of the correct types are specified for these elements. These checks
are discussed in the sections on the specific constructed types.

Constructors

Constructors are generated to allow an object to be initialized in a number of different ways. All productions have a
default constructor with no parameters. This creates an empty object that can be filled in at alater time. Constructors
are also created that take a parameter of the base type value to alow direct population upon creation of an object. In
our example code, two constructors were generated:

public Enpl oyeeNunmber () : base() { }

public Enpl oyeeNunmber (int value_) : base (value_) {

41

Generated C# Source Code Overview

}

More complex constructed ASN. 1 types such asa SEQUENCE would have a constructor that would have an argument
for each defined element. A CHOICE on the other hand would have aunique constructor for each of the possible choice
items. See the sections on specific ASN.1 typesto find out exactly what constructors are generated for a given type.

Decode Method

The generated decode method for BER/DER has the following general form:

public override void Decode (AsnlBerDecodeBuffer buffer,
bool explicitTagging, int inplicitLength);

Usersof the C and C++ version of the product might recognize thisform. It isvery similar to the C function prototype.
A reference to an Asnl1Ber DecodeBuffer object is passed that specifies the message being decoded. Thisis similar to
the context variable in the C version of the product.

The explicitTagging and implicitLength arguments should be of no concern to the average user. The explicitTagging
argument should besettot r ue and theimplicitLength argument set to zero. These argumentsare only used ininternal
calls generated by the compiler when implicit tagging is used. In this case, the decoder will at times only be concerned
with decoding the contents of afield and not the tag information. At the outer levels, it will always be necessary to
decode atag and length.

The C# decode method reports errors by throwing exceptions. Thisis achange from the C/C++ version that returned a
status value. The Asn1Exception classisthe base classfor all exceptions defined for ASN1C. A complete list of these
exceptions can be found in the ASN1C Exceptions section.

For PER, the signatureis similar:
public override void Decode (AsnlPerDecodeBuffer buffer);

In this case, the explicitTagging and implicitLength arguments are not required since PER has no tagging. The only
required argument is a reference to a decode buffer object.

For XER or XML, the default behavior is to generate code using the Syst em Xm . Xm Reader classto parsethe
XML. The following methods are generated:

public void DecodeDocunent (System Xm . Xnl Reader reader)
public void Decode(System Xm . Xml Reader reader, bool asG oup)

If - sax is specified on the command line, then the generated code uses the SAX API for parsing. In this case, two
overloaded decode methods are generated:

public override void Decode (System (bject reader, string xm URl);

public override void Decode (System Object reader, Stream byteStream;

These take as arguments an XML reader object reference and a reference to an input source object. The XML reader
object is astandard class within an XML parser that reads and parses an XML document. The input source can either
be a URI (this can be alocal filename) or an in-memory byte stream.

For OER, the decode signatureis:

public override void Decode(AsnlQer DecodeBuffer buffer);

42

Generated C# Source Code Overview

Encode Method

The generated encode method for BER/DER has the following general form:
public override int Encode (AsnlBer EncodeBuffer buffer, bool explicitTagging);

The Asn1Ber EncodeBuffer argument specifies the buffer into which the message will be encoded. The explicitTagging
argument is primarily for use by the compiler for generating internal calls to handle implicitly tagged elements in
constructed types. Users should always set thisargument tot r ue.

The encode method returns the length of the encoded component. Unlike the C /C++ version, this return value does
not double as a status value as well. Any errors that occur in the encode process are reported by throwing an ASN1C
exception. A complete list of these exceptions can be found in the ASN1C Exceptions section.

The general form of a PER encode method is as follows:
public override void Encode (AsnlPerEncodeBuffer buffer);

In this case, the explicitTagging argument is not required since PER has no tagging. The only required argument is
areference to an encode buffer object. Also note that the return value is void instead of int. No intermediate lengths
are returned during the encoding of a PER message. Any errors that occur are reported as an exception; hence there
isno need for areturn value.

The general form of an XER encode method is as follows:
public override void Encode (AsnlXerEncodeBuffer buffer, string el enNane);

In this case, the buffer reference is to an XER encode buffer and an element name argument is added. The element
name is the name of the element that is to bracket the XML encoded value (i.e. <elemName>vaue</elemName>).
Thereturn typeis also void as in the PER case because errors are reported through the exception mechanism.

The general form of an OER encode method is as follows:

public override void Encode (AsnlCerEncodeBuffer buffer);

Other Methods

Other generated methods include the following:

A private Init() method. This is generated in constructed types to set all element object references to null prior to
decoding.

A public Print() method. Thisisonly generated if the —print option is specified. This provides aformatted printout of
the contents of the object. The output can be directed to a StreamWriter object.

A public ElemName property (CHOICE only). This property retrieves the name of an element within a CHOICE
construct give its assigned identifier value.

The public Set_<element> methods (CHOICE only). These are generated for each element in a CHOICE construct
to allow the CHOICE value to be set.

Inner Classes

The generation of code for XER causes the following inner class definition to be generated:

43

Generated C# Source Code Overview

public class SaxHandl er : AsnlXer SaxHandl er {
AsnlXer SaxHandl er nEl enSaxHandl er;
StringBuffer mCurrEl enval ue;

i nternal SaxHandler() {
<code ..>

}

public void StartEl ement (string namespaceURl, string |ocal Name,
string gName, Attributes atts)

{
<code ..>
}
public void Characters (char[] ch, int start, int |ength)
{
<code ..>
}

public void EndEl enent (string namespaceURl,
string | ocal Nane, string gName)

{
}

<code ..>

}

This is an implementation of a standard SAX content handler class. As the XML parser software parses messages,
the methods within this class are invoked with the parsed content. The StartElement method is invoked after a start
element tag (<tag>) is parsed. The Characters method is invoked one or more times to pass the content between tags
into the application. The EndElement method isinvoked when an end element tag (</tag>) is encountered.

The ASN1C compiler generates custom code for each ASN.1 type within a given specification to parse the XML
contents and fill in the generated C# objects.

Error Handling

As noted elsawhere in this manual, the asnlc runtime and generated code will throw exceptions that are, or derive
from, Asnl1Exception. The exception tells you what was wrong and provides a stack trace. If you need additional
information you may try the following:

* ldentify the byte location in the input data using Asn1DecodeBuffer.ByteCount.
* |dentify the problem element using element name tracking. The procedure to do thisissimple:
1. Add "-events' to your asnlc command line. Thisis necessary for element name tracking to work.
2. Obtain an AsnlContext object from your encode/decode buffer using Asn1M essageBuffer.Context.
3. Enable element name tracking before encoding/decoding by invoking AsnlContext.EnableElementTracking().

4. Get the name of the problem element by invoking Asn1Context.GetCurrentElement() inside your exception han-
dling code.
Element name tracking is demonstrated in the sample Writer in sample_ber/EventHandler.

Chapter 5. ASN.1 Type to C# Class

Mappings

The following sections discuss the specific mappings of ASN.1 and XSD typesto C# classes.

BOOLEAN

The ASN.1 BOOLEAN type is converted to a C# class that inherits the Asn1Boolean run-time class. This base class

encapsulates the following public member variable:

public bool nVal ue;

This is where the Boolean value to be encoded is stored. It al'so contains the result of a decode operation. Sinceit is
public, it can be accessed directly to get or set the value. The generated constructors can also be used to set the value.

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production:

<nane> ::= BOOLEAN

XSD Type:

<xsd: bool ean>

Generated C# class:

public <nane> ()
}

public <nanme> (bool

}
}

public class <name> :

AsnlBool ean {
base() {

val ue_)

base (

This definition assumes a simple assignment of the form “<name> ::= BOOLEAN?" (i.e., no tagging or subtypes have
been added to the BOOLEAN declaration). In this case, no specific encode or decode methods are generated — calls
to these methods pass through to the generic calls defined in the base class. Thisis true of all other primitive type

declarations as well unless otherwise noted.

INTEGER

The ASN.1 INTEGER type is converted to a C# class that inherits the Asnlinteger run-time class. This base class

encapsulates the following public member variable:

public | ong nVal ue;

This is where the integer value to be encoded is stored. It aso contains the result of a decode operation. Since it is

public, it can be accessed directly to get or set the value. The generated constructors can also be used to set the value.

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production:

<nane> ::= | NTEGER

XSD Types:

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

i nt eger >,
| ong>,
unsi gnedl nt >,
nonPosi ti vel nt >,
nonNegati vel nt >

<xsd: byt e>,
<xsd: unsi gnedByt e>,

<xsd: short >,
<xsd: un
<xsd: unsi gnedLong>,
<xsd: negati vel nt 3

>

45

value_) {

<xsd:i nt >,
si gnedShort >
<xsd: posi tiv

ASN.1 Type to C# Class Mappings

Generated C# class: public class <name> : Asnllnteger {
public <nane> () : base() {
}
public <nane> (long value_) : base(value_) {
}
}

This showsthe class generated for asimple INTEGER assignment. If atagged or constrained typeis specified, specific
encode and decode methods will be generated as well.

Large Integer Support

The maximum size for a C# long integer type is 64 bits. ASN.1 has no such limitation on integer sizes and some
applications (security key values for example) demand larger sizes. In order to accommodate these types of applica
tions, the ASN1C compiler allows an integer to be declared a “ big integer” via a configuration file variable (the <is-
Biglnteger/ > setting is used to do this — see the section describing the configuration file for full details). When the
compiler detects this setting, it will declare the integer class to be derived from the Asn1Biglnteger class instead of
the Asnlinteger class. The AsnlBiglnteger class encapsulates an object of the C# Biglnteger class. This provides full
support for working with integers of arbitrary lengths.

For example, the following INTEGER type might be declared in the ASN.1 sourcefile:
SecurityKeyType ::= [APPLI CATI ON 2] | NTEGER
Then, in aconfiguration file used with the ASN.1 definition above, the following declaration can be made:
<pr oducti on>
<nane>Securi t yKeyType</ nane>
<i sBi gl nteger/ >
</ producti on>
Thiswill cause the compiler to generate the following class header:

cl ass SecurityKeyType : AsnlBi gl nt eger

Thevaluefield is populated by creating a C# Biglnteger object and either passing it in through the constructor or using
it to directly populate the public member variable named mValue declared in the base class.

BIT STRING

The ASN.1BIT STRING typeis converted to a C# class that inherits the Asn1BitString run-time class. This base class
encapsul ates the following two public member variables:

public int nunbits;
public byte[] nWVal ue;

These describe the hit string to be encoded or decoded.

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production: <nane> ::= BIT STRI NG
Generated C# class: public class <nanme> : AsnlBitString|{
public <name> ()
base() {

46

ASN.1 Type to C# Class Mappings

}

public <nanme> (int numbits_, byte[] |data)
base (numbits_, data) {

}

public <name> (bool[] bitVal ues)
base (bitValues) {

}

public <nane> (string value_)
base (value_) {

}

}

This shows the class generated for a simple BIT STRING assignment. If atagged or constrained type is specified,
specific encode and decode methods will be generated as well.

The constructors generated for this type provide additional options for populating the member variables in the base
class. In addition to passing the string using the numbits and data arguments to specify a bit string in native format,
the string can be specified as an array of boolean values or as a string. The string form expects the string to be passed
in the ASN.1 value notation format for either abinary string (i.e., ‘xxxx’ B) or a hexadecimal string (i.e., ‘xxxx'H).

Named Bits

In the ASN.1 standard, it is possible to define an enumerated bit string that specifies named constants for different
bit positions. ASN1C provides support for this type of construct by generating symbolic constants that can be used
to set, clear, or test these named bits. These symbolic constants are simply the bit names and values in the following
genera form:

public readonly static int <name> = <val ue>;
The base class contains the following methods for using these generated constants:

Set : This method can be used to set a bit in the bit string to be set. There is also an overloaded version that takes a
boolean value argument that can be used to set the bit to the given boolean value.

Clear : This method can be used to clear the named bit in the bit string.
Get : This method can be used to test if the named bit is set or clear.

See the Asnl1BitSiring class description in the run-time section for more details on these methods.

OCTET STRING

The ASN.1 OCTET STRING type is converted to a C# class that inherits the Asn1OctetString run-time class. This
base class encapsul ates the following public member variable:

public byte[] mval ue;

The number of octets to be encoded or that were decoded is specified in the built-in length component of the array
object (i.e., mVaue.length).

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production: <nanme> ::= OCTET STRI NG
XSD Types: <xsd: hexBi nary>, <xsd: base64Bi nary>

47

ASN.1 Type to C# Class Mappings

Generated C# class: public class <nanme> : AsnlCctetStrin
public <nane> () : base() {
}
public <nane> (byte[] data) : base (
}
public <nane> (byte[] data,
int offset,
i nt nbytes)

base (data, offset, nbytes) {
}

public <nanme> (string value_) : base

}

}

This shows the class generated for asimple OCTET STRING assignment. If atagged or constrained typeis specified,
specific encode and decode methods will be generated as well.

The constructors generated for this type provide additional options for populating the member variables in the base
class. In addition to passing the string directly using the data argument, the string form can be used. The string is
passed in ASN.1 value notation format for either abinary string (i.e., ‘xxxx’ B), hexadecimal string (i.e., ‘xxxx’H), or
acharacter string (i.e., ‘xxxx"). A constructor also existsthat allows a portion of a byte array starting at a given offset
and consisting of a given number of bytesto be used to populate the variable.

TBCD and BCD Strings

TBCD and BCD strings represent telephony digits using one nibble per digit. In TBCD strings, the low nibble repre-
sents adigit that precedes the high nibble. To get a nicer string representation for these octet strings (giving the digits
rather than the binary content), ASN1C has classes Asn1BCDString and Asn1TBCDString, which are subclasses of
AsnlOctetString. ASN1C will automatically treat the following types as BCD/TBCD strings by using the alternative
subclass to represent the type:

* TBCD-STRING
 TBCDSTRING
» TBCDString

» BCDString

Additionally, you can use a configuration file and the i STBCDSt ri ng element to apply this specia treatment to
other types.

This specia treatment of BCD and TBCD strings can be disabled using the - noTBCD or - noBCD command-line
option; these two options are equivalent and either option disables special treatement in both cases. Use of this option
is necessary for certain specifications, which use the above type names for types that are not strictly TBCD strings.

PLMNidentity

Some specifications (e.g., RANAP) contain a production named PLMNidentity. In most of these specifications the
production is declared to be of type TBCD-STRING, although this declaration is not correct, as afiller character can
appear in the middle of the string, which is not permitted in genuine TBCD strings.

48

g {

data) {

(value_) {

ASN.1 Type to C# Class Mappings

The default behavior of ASN1C isto recognize a production named PLMNidentity (any case) and treat that production
asan OCTET STRING, regardless of what the ASN.1 might specify. This special treatment of PLMNidentity can be
disabled with the-noPLMN qualifier to the asnlc command. Thereisalso an <isPLMNidentity> configurationfileitem
at production level to declarethat aproductionisaPLMNidentity and will therefore betreated asan OCTET STRING.

Character String Types

The C# version of the compiler contains support for the various ASN.1 character string types including the BMP,
Universal and UTF-8 string types. All character stringsin C# are based on 16-bit Unicode characters except for Uni-
versal String which is based on a 32-bit character set.

All character string types are derived from the Asn1CharString base class (except the UniversalString). This class
contains the following public member variable that holds the character string contents:

public string nVal ue;

Each of the specific ASN.1 character string types except Universal String has an associated C# class that is derived
from the Asn1CharSring base class. The general form of the C# class name for each of the ASN.1 string types is
Asnl followed by the ASN.1 string type name. For example, |A5String is represented by the AsnllA5String class,
NumericString by the AsnINumericString, etc.

The Universal String associated C# class is derived from Asnl1Type and it contains the following public member that
holds the character string contents:

public int nVal uel];

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production: <name> .= <Char StrType>
XSD Types: <xsd:string> and all related types including date/time
types and duration.
Generated C# class: public class <nane> : Asnl<Char Str Ty
public <nane> ()
base() {
}
public <nane> (string value_)
base (value_) {
}
}

ENUMERATED

The ASN.1 ENUMERATED type is converted into a C# class that inherits the Asn1Enumerated run-time class. In
version 6.1, the generated code was changed to conform to Joshua Bloch’ s static enumeration pattern (as explained in
Effective Java). Enumerated values are created as singletonsto alow for lazy initialization. A specially named object,
dec, is created to hold decoded values. In combination, these changes improve application performance, since only a
fixed number of objects are alocated for any execution of the application.

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production: <name> ::= ENUMERATED { <el>, <e2>, .,
XSD Types: Any type with an <xsd:enumeration> restriction.

49

pe> {

<en> }

ASN.1 Type to C# Class Mappings

Generated C# class:

public class <nanme> : AsnlEnurmer at e
private static <name> _<el> = null;
private static <name> _<e2> = null;

private static <nane> _dec = new <nane>(-1);

protected <name> (int value)
base (value_) { }

public static <nane> <el>() {

if (_<el> == null) _<el> = new <name>(<vl>);

return _<el>;

public static <name> dec() { return

_|dec; }

public static <name> Val ued { <codex }

public override void Decode () { <cod
public override int Encode () { <code
public override void Print () { <code

Notes:

1. The"“...” notation used in the ASN.1 definition above does not represent the ASN.1 extensibility notation. It isused
to show a continuation of the enumerated sequence of values.

2. The<el>, <e2>, etc. items denote enumerated constants. These can bein identifier only format or identifier(value)
format. The <v1>, <v2>, etc. items denote the enumerated values. These are sequential numbers starting at zero if
no values are provided. Otherwise, the actual enumerated values are used.

3. The public methods that are generated are shown without arguments or function bodies for brevity.

In the case of the enumerated type, encode/decode methods are always generated. These verify that the given value
is within the defined set. An AsnllinvalidEnumException is thrown if the value is not in the defined set unless the
enumeration is extensible. In this case, no exception is thrown.

If an extensibility marker (...) ispresent in the ASN.1 definition, it will not affect the generated constants. A constant
will be generated for all options — both root and extended. However, in the ValueOf method, an “undefined” constant
will be returned to indicate that the value is not in the original specification.

NULL

The ASN.1 NULL typeis converted into to a C# class that inherits the Asn1Null run-time class. This base class does
not contain a public member variable for a value because the NULL type has no associated value.

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production:

<nane> ::= NULL

Generated C# class:

public class <nanme> : AsnlNull {

50

e> }
>
>

—

ASN.1 Type to C# Class Mappings

public <nane> ()
base() {
}
}

Thisshowsthe class generated for asimple NUL L assignment. If atagged typeis specified, specific encode and decode
methods will be generated as well.

OBJECT IDENTIFIER

The ASN.1 OBJECT IDENTIFIER type is converted to a C# class that inherits the Asn1Objectldentifier run-time
class. This base class encapsul ates the following public member variable:

public int[] nWVal ue;

The number of subidentifiers to be encoded or that were decoded is specified in the built-in length component of the
array object (i.e,, mValue.length).

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production: <nanme> ::= OBJECT | DENTI FI ER
Generated C# class: public class <nanme> : AsnlQbject| den
public <name> ()
base() {
}

public <nane> (int[] value))
base (value_) {
}

}

This shows the class generated for a smple OBJECT IDENTIFIER assignment. If a tagged or constrained type is
specified, specific encode and decode methods will be generated as well.

Using string for OBJECT | DENTI FI ER

OBJECT | DENTI FI ER values are represented using C# class Asn1St r i ngQO D, or a subclass thereof, when the
- 0i d- as-stri ngoption is specified.

AsnlSt ri ngO Dhas apublic string member, mValue, which must be in dotted-number format (e.g. "0.5.1234"):
public string nval ue;

The advantage of this representation is that arbitrarily large arc identifiers may be used.

If anamed typeis defined:

<nanme> ::= OBJECT | DENTI FI ER

then asnlc will generate a class resembling the following:

public class <name> : AsnlStringO D {
public <nane> () : base()

{}

51

tifier {

ASN.1 Type to C# Class Mappings

public <nane> (int[] value)
base (val ue_)
{}

public <nane> (string val ue_)
base (val ue_)
{}

}

RELATIVE-OID

The ASN.1 RELATIVE-OID type is converted to a C# class that inherits the Asn1RelativeOID run-time class. This
class inherits the Asn1Objectldentifier class defined above. The storage of the relative OID value is the same as de-
scribed for OBJECT IDENTIFIER. The only difference isthe extended class defines different implementations of the
encode/ decode methods that apply the rules associated with the RELATIVE-OID type.

Using string for RELATI VE- O D

RELATI VE- O D values are represented using C# class Asn1St ri ngRel at i veQ D, or a subclass thereof, when
the - oi d- as- st ri ngoption is specified.

The advantage of this representation is that arbitrarily large arc identifiers may be used.

AsnlStringRel ati ved Disasubclassof Asn1St ri ngQ D, theclassused for OBJECT | DENTI FI ER, which
see.

If a named type is defined, asnlc will generate a class similar to the OBJECT | DENTI FI ER case, except that the
base classisAsnlStri ngRel ati ved D.

REAL

The ASN.1 REAL typeisconverted to aC# classthat inheritsthe Asn1Real run-time class. Thisbase class encapsul ates
the following public member variable:

publ i ¢ doubl e nVal ue;

Thisiswhere the real value to be encoded is stored. It aso contains the result of a decode operation. Sinceit is public,
it can be accessed directly to get or set the value. The generated constructors can also be used to set the value.

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production: <nane> ::= REAL
XSD Types: <xsd: fl oat >, <xsd: doubl e>
Generated C# class: public class <name> : AsnlReal {
public <name> ()
base() {
}
public <nane> (doubl e value_)
base (value_) {
}

52

ASN.1 Type to C# Class Mappings

}

This shows the class generated for a ssimple REAL assignment. If atagged or constrained type is specified, specific

encode and decode methods will be generated as well.

REAL (Base 10)

The ASN.1 Base 10 REAL typeis converted to a Java class that extends the Asn1Real 10 run-time class. A base 10

real is specified in ASN.1 using aWITH COMPONENTS clause such as the following:

REAL(W TH COVPONENTS {
base (10)
})

Itisalso used for XSD decimal type specifications.

In this case, the real number is stored as a C# character string in the character string base class:

public String nval ue;

ASN.1 Production:

<nane> ::

REAL (W TH COVPONENTS { base

XSD Types:

<xsd: deci mal >

Generated C# class:

}

public class <name> :
public <nanme> () {
base();
}

public <name> (String value_) {
base (value_);
}

AsnlReal 10 {

SEQUENCE

The ASN.1 SEQUENCE typeis converted to a C# class that inherits the Asn1Type run-time base class. Public member
variablesare generated for each of the elementsdefined in the SEQUENCE. Each of these member variabl esrepresents
an object reference since all of the ASN.1 types are mapped to C# objects.

ASN.1 Production:

<nane>

}

: = SEQUENCE {
<el enent 1- nane> <el enent 1-type>,
<el enent 2- nane> <el enent 2-type>,

XSD Types:

<xsd: sequence>,

<xsd: al | >

Generated C# class:

public class <name> : AsnlType {
public <typel> <el enent 1- nane>
public <type2> <el enent 2- nane>

publ i c <nanme> ()

{

base()

53

(10) 1)

ASN.1 Type to C# Class Mappings

}

public <name> (<typel> <argl>, <typeZ
base()

{
<el enent 1- nane> = <ar gl>;
<el enent 2- nane> = <ar g2>;

}

public <nanme> (<basetypel> <argl>,
<baset ype2> <arg2>, .)

base()
{
<el enent 1- nane> = new <typel> (<ar
<el enent 2- nane> = new <type2> (<ar
}

private void Init () { ...}

public override void Decode () { ...}
public override int Encode () { ...}
public override void Print () { ...}

Notes:

1. The... notation used in the ASN.1 definition above does not represent the ASN.1 extensibility notation. It is used
to show a continuation of the sequence elements.

2. The <typel>, <type2>, etc. items denote the equivalent C# types generated from the ASN.1 <element-typel>,
<element-type2>, etc. definitions.

3. The public and private methods that are generated are shown without arguments or function bodies for brevity.

The compiler first generates a public member variable for each of the elements defined in the SEQUENCE. The
decision was made to make these variables public to make them easier to popul ate for encoding. The aternative wasto
use protected or private variableswith get/set methods for setting or examining the values. It wasfelt that this approach
would be too cumbersome for setting values in deeply nested constructed types.

A default constructor is then generated followed by overloaded constructors for setting the element values. The first
formissimply adirect mapping of each of the element typesto a constructor argument. The second form only contains
argumentsfor the required typesin the SEQUENCE (i.e. OPTIONAL and DEFAULT elementsare omitted). Thethird
form uses the base type of each of the elements as the type for each argument. This makes it possible to construct a
SEQUENCE or SET using literal variables instead of always having to create an object. Finally, another variant of
this constructor with primitive typesis generated for required elements only. It is possible that you will not see all of
these variations in a given generated class. It depends on a) whether or not the SEQUENCE or SET contains optional
items and b) whether or not it contains primitive dataitems.

For example, the following shows how a variable of a generated class containing two 1A5String elements could be
constructed:

vl = new Hellowbrld (“hello”, “world");
Without this second form of constructor, the following would need to be done:

vl = new Hell oWworld (new Asnll A5String(“hello”),

54

> <arg2>,

gl>);
g2>);

2)

ASN.1 Type to C# Class Mappings

new Asnll A5String(“world”));

Also note that since all member variables are public, it is not necessary to use any of the argument-based constructors
at all. A variable can be created using the default constructor and each of the elements populated directly.

Creation of Temporary Types

Temporary types are created when a SEQUENCE (or any other constructed type) definition contains other embedded
constructed types. An example of thisisasfollows:

A ::= SEQUENCE {
x SEQUENCE ({
al | NTEGER,
a2 BOOLEAN

} 1]
y OCTET STRING Sl ZE (10)

}

In this example, the production has two elements — x and y. The nested SEQUENCE x has two additional elements
—al and a2.

The ASN1C compiler first recursively pulls all of the embedded constructed elements out of the SEQUENCE and
forms new temporary types. The names of the temporary types are of the form <name>_<element-namel>_<element-
name2>_ ... <element-nameN>. Using thisalgorithm, the ASN.1 type defined above would be reduced to thefollowing
equivalent ASN.1 types:

A-x ::= SEQUENCE {
al | NTEGER,
a2 BOOLEAN

}

A ::= SEQUENCE {

X A-X,

y OCTET STRI NG SI ZE (10)
}

The mapping of the ASN.1 types to C# classes would then be done.

In the case of nesting levels greater than two, al of the intermediate element names are used to form the final name.
For example, consider the following type definition that contains three nesting levels:

X ::= SEQUENCE {
a SEQUENCE {
aa SEQUENCE { x | NTEGER, y BOCLEAN },
bb | NTEGER
}
}
In this case, the generation of temporary types resultsin the following equivalent type definitions:
X-a-aa ::= SEQUENCE { x | NTEGER, y BOOLEAN }
X-a ::= SEQUENCE { aa X-a-aa, bb INTEGER }
X ::= SEQUENCE { X-a a }

55

ASN.1 Type to C# Class Mappings

Note that the name for the aa element type is X-a-aa. It contains both the name for a (at level 1) and aa (at level 2).
Thisis achange from v5.1x and lower where only the production name and last el ement name would be used (i.e., X-
aa). The change was made to ensure uniqueness of the generated names when multiple nesting levels are used.

OPTIONAL keyword

Elements within a sequence can be declared to be optional using the OPTIONAL keyword. This indicates that the
element is not required in the encoded message.

Optiona elements are accounted for in the C# version of the compiler by simply using null object references to denote
the absence of an element. Remember that even the simplest primitive ASN.1 type definitions are wrapped in a C#
class definition. Therefore an object must be created for any type defined as an element within a SEQUENCE.

To populate a SEQUENCE object for encoding that contains optional elements, the special constructor(s) for required
elements only can be used. The default constructor also can be used followed by the manual creation and setting of
the individual element values. The default constructor will initialize all element object references to null, so only the
items to be encoded need be popul ated.

DEFAULT keyword

The DEFAULT keyword allows a default value to be specified for elements within the SEQUENCE. ASN1C will
parse this specification and treat it as it does an optional element. Note that the value specification is only parsed in
simple casesfor primitive values. It isup to the programmer to provide the value in complex cases. For BER encoding,
avalue must be specified be it the default or other value.

For DER or PER, it is a requirement that no value be present in the encoding for the default value. For integer and
boolean default values, the compiler automatically generates code to handle this requirement based on the valuein the
structure. For other values, the default value is handled the same as an optional element (i.e., a null object reference
indicates that nothing should be transmitted). The programmer must set the element object reference to null on the
encode side to specify default value selected. If thisis done, avalue is not encoded into the message. On the decode
side, the developer must test for a null object reference. If thisis the case, the default value specified in the ASN.1
specification is used.

Extension Elements

If the SEQUENCE type contains an open extension field (i.e., a ... at the end of the specificationor a ..., ... in the
middle), a special element will be inserted to capture encoded extension elements for inclusion in the final encoded
message. Thiselement will be of type ASN1OpenExt and have the name extEleml. Thisfield will contain the complete
encoding of any extension elementsthat may have been present in amessage when it is decoded. On subsequent encode
of the type, the extension fields will be copied into the new message.

If the SEQUENCE type contains an extension marker and extension elements, then the open extension type field will
not be added. Instead, the actual extension elementswill be present. These elementswill betreated asoptional elements
whether they were declared that way or not. The reason is because a version 1 message could be received that does
not contain the elements.

XSD <xsd:all> Type Mapping

As per the X.694 standard, the XSD all type is mapped to an ASN.1 SEQUENCE type with a special element add
named order. Thisisadded as aspecia element to the generated C# classwith the name _order. This containsan index
entry for each element that identifies the order elements are to be serilaized in when encoded in XML. By default,
the array isinitialized to encode the elements in the same order as specified in the type. When an XML document of
this type is decoded, the order in which the elements are received in recorded in this array. If the data is serialized

56

ASN.1 Type to C# Class Mappings

out in binary form (BER or PER) the array isincluded in the encoding. If isonly transparent in XML encode/decode
operations to mimic the behavior of its handling in XSD.

An example of how this is used might be a gateway application that read XML data and then translated to binary
form for transmission over alow bandwidth network. When received on the other end, the receiving application would
transcode back from binary to XML. Suppose the item being transmitted was described using an xsd:all type that
had three elements: a, b, and ¢. When the original XML document was received by the sending application, suppose
the elements were received in the order ¢, b, a. The order array would record this fact and it would be included in
the binary serialization. When the receiver decoded the message on the other end, the order information would be
available along with the element data. The receiver could then reconstruct the XML document with the items in the
same order as received.

SET

The ASN.1 SET typeisconverted into a C# class that isidentical to that for SEQUENCE as described in the previous
section. The only difference between SEQUENCE and SET isthat elements may be transmitted in any order ina SET
whereas they must be in the defined order in a SEQUENCE. The only impact this has on ASN1C isin the generated
decoder for a SET type.

The decoder must take into account the possibility of out-of-order elements. Thisis handled by using aloop to parse
each element in the message. Each time an item is parsed, an internal mask bit within the decoder is set to indicate
the element was received. The complete set of received elements is then checked after the loop is completed to verify
all required elements were received.

SEQUENCE OF

The ASN.1 SEQUENCE OF typeis converted to a C# class that inherits the Asn1Type run-time base class. An array
public member variable named elements is generated to hold the elements of the defined type.

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production: <name> ::= SEQUENCE OF <type>

XSD Types: Eleements or content group definitions containing the
minOccurs and/or maxOccurs facets. Also, <xsd:list>
types use this model.

Generated C# class: public class <name> : AsnlType {

public <type>[] elenents

public <type> () {
el enents = nul | ;
}

public <type> (int nunmRecords) {
el ements = new <type> [nunRecor ds]
}

public override void Decode () { ...}
public override int Encode () { ...}
public override void Print () { ...}

}

The compiler first generates a public member variable to hold the SEQUENCE OF elements. The decision was made
to make the variable public to make it easier to populate for encoding. The alternative was to use protected or private
variables with get/set methods for setting or examining the values. It was felt that this approach would be too cumber-
some for setting values in deeply nested constructed types.

57

ASN.1 Type to C# Class Mappings

Two constructors are generated: a default constructor and a constructor that takes a number of elements argument.
The default constructor will set the elements variable to null. The second constructor will allocate space for the given
number of elements. The recommended way to populate a variable of thistype for encoding isto use the second form
of the constructor to allocate the required number of elements and then directly set the element object values. For
example, to populate the following construct:

I nt Seq ::= SEQUENCE OF | NTECER
with 3 integers, the following code could be used:

IntSeq intSeq = new IntSeq (3);

i nt Seq. el enent s[0] new Asnll nteger (1);
i nt Seq. el enent s[1] new Asnll nt eger (2);
i nt Seq. el enent s[2] new Asnll nt eger (3);

Note that each of the integer element valuesis wrapped in an Asnlinteger wrapper class.

Generation of Temporary Types for SEQUENCE OF Ele-
ments

Aswith other constructed types, the <type> variabl e can reference any ASN.1 type, including other ASN.1 constructed
types. Therefore, it is possible to have a SEQUENCE OF SEQUENCE, SEQUENCE OF CHOICE, etc.

When a constructed type is referenced, a temporary type is generated for use in the final production. The format of
this temporary type nameis asfollows:

<pr odNane>_el enent

In this definition, <prodName> refers to the name of the production containing the SEQUENCE OF type.

For example, asimple (and very common) single level nested SEQUENCE OF construct might be as follows:
A ::= SEQUENCE OF SEQUENCE { I NTEGER a, BOOLEAN b }

Inthiscase, atemporary typeisgenerated for the element of the SEQUENCE OF construct. Thisresultsin thefollowing
two equivalent ASN.1 types:

A-el enent ::= SEQUENCE { | NTEGER a, BOOLEAN b }
A ::= SEQUENCE OF A-el enent

Thesetypesarethen converted into the equivalent C# classes using the standard mapping that was previously described.

SEQUENCE OF Type Elements in Other Constructed
Types

Frequently, a SEQUENCE OF construct is used to define an array of some common type in an element in some other
constructed type (for example, a SEQUENCE). An example of thisisasfollows:

SonmePDU :: = SEQUENCE {
addr esses SEQUENCE OF Al i asAddress,

58

ASN.1 Type to C# Class Mappings

Normally, thiswould result in the addresses element being pulled out and used to create atemporary type with aname
equal to “ SomePDU-addresses’ asfollows:

SonePDU- addr esses ::= SEQUENCE OF Al i asAddress

SonmePDU : : = SEQUENCE {
addr esses SomePDU- addr esses,

}

However, when the SEQUENCE OF element references a simple defined type as above with no additional tagging
or constraint information, an optimization is done to cut down on the size of the generated code. This optimization
isto generate a common name for the new temporary type that can be used for other similar references. The form of
this common name is as follows:

_SeqOf <el enent Pr odNane>
So instead of this:;

SonePDU- addr esses ::= SEQUENCE OF Al i asAddress
The following equivalent type would be generated:

_SeqOF Al i asAddress ::= SEQUENCE OF Al i asAddress

The advantage is that the new type can now be easily reused if “SEQUENCE OF AliasAddress’ is used in any other
element declarations. Note the (illegal) use of an underscore in the first position. Thisis to ensure that no name colli-
sions occur with other ASN.1 productions defined within the specification.

An example of the savings of this optimization can be found in H.225. The above element reference is repeated 25
different times in different places. The result is the generation of one new temporary type that is referenced in 25
different places. Without this optimization, 25 unique types with the same definition would have been generated.

SET OF

The ASN.1 SET OF typeis converted into a C# class that is identical to that for SEQUENCE OF as described in the
previous section.

CHOICE

The ASN.1 CHOICE typeis converted to a C# class that inherits the Asn1Choice run-time base class. This base class
contains protected member variables to hold the choice element object and a selector value to specify which itemin
the CHOICE was chosen. Methods are generated to get and set the base class members.

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production: <name> ::= CHO CE {
<el enent 1- nane> <el enent 1-type>,
<el enent 2- nane> <el enent 2-type>,

}

XSD Types: <xsd: choi ce>, <xsd:uni on>

Generated C# class: public class <nanme> : AsnlChoice {

59

ASN.1 Type to C# Class Mappings

public const byte _<ELEMENT1- NAME> 1
public const byte _<ELEMENT2- NAVE> 2
public <name> () : base() { }

public override string El emName { ...}

public void Set_<el enent1-nane> () {
public void Set_<el enent 2-nane> () {

public override void Decode () { ...}
public override int Encode () { ...}
public override void Print () { ...}

Notes:

1. The... notation used in the ASN.1 definition above does not represent the ASN.1 extensibility notation. It is used
to show a continuation of the sequence elements.

2. The public and private methods that are generated are shown without arguments or function bodies for brevity.

The compiler generates sequential identification constants for each of the defined elementsin the CHOICE construct.
The format used is the element names converted to al uppercase characters and preceded by an underscore. The
constants represent the values returned by the base class Choicel D property can therefore be used to determine what
type of choice element was received in a decode operation.

The ElemName property is generated by the compiler and returns the name of the selected element.

A series of Set_<element> methods are generated for setting the element value. In these declarations, <element>
would be replaced with the actual element names. Thisisthe only way an element value can be set for encoding; these
methods ensure a consistent setting of both the element identifier and object reference values.

To access the value of a generated CHOICE object, the Choicel D property and GetElement methods within the base
class are used. Thisis generally done with an if or switch statement as follows:

AsnlBMPString el ement;
if (aliasAddress. ChoicelD == AliasAddress. H323 ID) {
el ement = (AsnlBMPString) aliasAddress. Get El ement();

}

In this case, Choicel D isinvoked and the result tested to see if the expected value was received. If it was, the element
is assigned using GetElement with a cast operation.

Creation of Temporary Types

The rules for the generation of CHOICE temporary type variables are the same as they were for SEQUENCE and
SET variables. Complex nested types are pulled out of the definitions and used to create additional types to reduce
the nesting levels. An example of thisis asfollows:

Test Choi ce ::= CHO CE {
a | NTEGER,
b BOOLEAN,

c SEQUENCE { aa I A5String, bb NULL }

60

ASN.1 Type to C# Class Mappings

}
Thiswould be reduced to the following equivalent ASN.1 productions:

Test Choi ce-c ::= SEQUENCE { aa | A5String, bb NULL }

Test Choi ce ::= CHO CE {
a | NTEGER,
b BOOLEAN,
c Test Choi ce-c

}

this case, the embedded constructed element for option ¢ was pulled out to form the TestChoice-c production and then
this new production is referenced in the original definition.

Populating Generated Choice Structures for Encoding

The only way a CHOICE construct can be populated for encoding is by using one the generated Set_<element>
methods. It is necessary to do it this way because the base class contains two protected member variables (choicel D
and element) that must be set consistently. This is the only instance of a mapped type where the mapped element
values do not have public access.

The following demonstrates setting a variable of the TestChoice structure defined above to use the first option:

Test Choi ce test Choice = new Test Choice ();
t est Choi ce. Set _a (new Asnll nteger (222));

Accessing the Choice Element Value after Decoding

To access the element in a choice construct after decoding, the following two methods can be used (both are defined
in the Asn1Choice base class):

1. ChoicelD —thisreturns an identifier equal to one the generated choice identifier constants, and

2. GetElement — this returns a reference to the decoded element object. It is of type Asn1Type but it can be upcast to
the correct element type using information from the Choicel D call.

In addition, the compiler generates a ElemName property that can be used to get the textual name of the decoded
element.

XSD <xsd:union> Type Mapping

The <xsd:union> typeis handled in a similar fashion to a choice type. The main differenceis that theitemsin aunion
are not tagged. As per X.694, specia element names are generated for these itemsfor usein an ASN.1 CHOICE type.
These names are based on the base name alt and progress with sequential digits added for each addional union item
(alt-1, alt- 2, etc.). XML decoding isaccomplished by attempting to decode the content of each alternativein the union
and setting the value to the first alternative that can be decoded successfully.

Open Type

Note: The X.680 Open Typereplacesthe X.208 ANY or ANY DEFINED BY constructs. AnNANY or ANY DEFINED
BY encountered within an ASN.1 module will result in the generation of code corresponding to the Open Type de-
scribed below.

61

ASN.1 Type to C# Class Mappings

The ASN.1 Open Typeis converted into a C# class that inherits the Asn1OpenType class. Thisclassin turn inheritsthe
Asn1OctetString class and providesthe following public member variable for storing the encoded message component:

public byte[] nVal ue;

The number of octets to be encoded or that were decoded is specified in the built-in length component of the array
object (i.e., mVaue.length).

The following shows the basic mapping from ASN.1 type to C# class definition:

ASN.1 Production: <nanme> ::= <openType>

Generated C# class: public class <name> : AsnlQpenType {
public <name> () : base() { }

public <nane> (byte[] data) : base (data) {

}
public <nanme> (byte[] data,
i nt of fset,
i nt nbytes)
base (data, offset, nbytes)
{
}
public <nanme> (AsnlEncodeBuffer buffer)
base ()
{
}

}

The <openType> placeholder is to be replaced with any type of open type specification. It could be the ANY or
ANY DEFINED BY keywords from the X.208 specification or an open type from X.681 (for example, TY PEIDEN-
TIFIER.& Type).

The last form of the constructor shown above is for an optimized form of Open Type encoding. When encoding is
done using BER, an open type header can be directly added to the beginning of an encoded message component. By
using this form of the constructor, you are indicating to the run-time encoder that the encoded message component
onto which a header is to be added is already present in the message buffer. The advantage is that binary copies of
the encoded message components are avoided both from the encode buffer to the open type object and from the open
type object back to the encode buffer.

For XER, anew class derived from the Asn1OpenType class was created. Thisisthe Asn1XerOpenType class and this
must be used whenever an open type is required for XER. The reason for creating a special derived class is because
of dependencies on XML parser classes defined within this class. If these were added directly to the Asn1OpenType
class, a user would need to always have XML parser files included in their classpath — even if working with BER,
DER, or PER only.

If the —tables command line option is selected and the ASN.1 type definition references a table constraint, the code
generated is different. In this case, Asn1OpenType above is replaced with Asn1Type. Thisthe base classfor all ASN.1
types. Thisalows avalue of any ASN.1 type to be specified. On the encoding side, a user can assign an object of any
ASN.1 type to this variable and the encoding routine will call the appropriate encoder according to the table index
value. If the variable type is not present in the table and the Object Set is extensible, than it can be encoded as an
open type. Otherwise an exception will be thrown. On the decoding side, the appropriate variable type is popul ated
from the table based on the decoded index parameters. The user can determine the variable type from the table index

62

ASN.1 Type to C# Class Mappings

value. If thevariable typeisnot present in table, then it will be decoded as an open typeif the Object Set isextensible;
otherwise and exception will be thrown.

<xsd:any> Handling

The XSD any wildcard item is similar to an ASN.1 open type in semantics in that it allows any valid content to be
present in that position in an XML document. However, an ASN.1 open type is not used to model an <xsd:any>.
Instead, a character string variable is used. This stores the full XML text of the field in native XML form (i.e. angle
brackets and the like are not escaped). Note that the XML text is not converted to different form when using binary
encoding rules - it ismaintained as XML text.

External Type

The ASN.1 EXTERNAL type is a useful type used to include non-ASN.1 or other data within an ASN.1 encoded
message. The typeis described using the following ASN.1 SEQUENCE:

EXTERNAL ::= [UNI VERSAL 8] | MPLICI T SEQUENCE {
direct-reference OBJECT | DENTI FI ER OPTI ONAL,
i ndirect-reference | NTEGER OPTI ONAL,
dat a- val ue-descri ptor Obj ect Descri ptor OPTI ONAL,
encodi ng CHO CE {
singl e- ASN1-type [0] ANY,
octet-aligned [1] IMPLICI T OCTET STRI NG
arbitrary [2] IMPLICIT BIT STRI NG

}

The ASN.1 compiler is used to create a meta-definition for this structure. The definition will be generated in the file
AsnlExternal.cs (or AsnlXerExternal.cs for XER), if needed by compiling ASN.1 file. An object created from the
resulting C# classis populated just like any other compiler-generated structure for working with ASN.1 data.

EmbeddedPDV Type

The ASN.1 EMBEDDED PDV typeisauseful type used to include non-ASN.1 or other datawithin an ASN.1 encoded
message. It was introduced in 1994 to replace EXTERNAL by removing unneeded fields and adding afew new ones
to hold information that was missing. This type is described using the following ASN.1 SEQUENCE:

EnbeddedPDV :: = [UNI VERSAL 11] | MPLICI T SEQUENCE ({
identification CHO CE {
synt axes SEQUENCE {
abstract OBJECT | DENTI FI ER,
transfer OBJECT | DENTIFIER },
syntax OBJECT | DENTI FI ER,
presentation-context-id | NTEGER,
cont ext - negoti ati on SEQUENCE {
presentation-context-id | NTEGER,
transfer-syntax OBJECT | DENTI FI ER },
transfer-syntax OBJECT | DENTI FI ER,
fixed NULL
}l]
dat a- val ue OCTET STRI NG }
(WTH COVPONENTS {

63

ASN.1 Type to C# Class Mappings

dat a- val ue-descri ptor ABSENT })

The ASN.1 compiler is used to create a meta-definition for this structure. The definition will be generated in the file
Asn1EmbeddedPDV.cs (or Asn1Xer EmbeddedPDV.csfor XER), if needed by compiling ASN.1files. An object created
from theresulting C# classis populated just like any other compiler-generated structure for working with ASN.1 data.

Parameterized Types

The ASN1C compiler can parse parameterized type definitions and references as specified in the X.683 standard.
These types allow dummy parameters to be declared that will be replaced with actual parameters when the type is
referenced. Thisis similar to templatesin C++.

A simple and common example of the use of parameterized typesis for the declaration of an upper bound on a sized
type as follows:

Si zedQct et Stri ng{| NTEGER: ub} ::= OCTET STRING (SIZE (1..ub))

In thisdefinition, ‘ub’ would be replaced with an actual value when the typeis referenced. For example, asized octet
string with an upper bound of 32 would be declared as follows:

OctetString32 ::= SizedCctet String{32}

The compiler would handle this in the same way as if the origina type was declared to be an octet string of size 1
to 32. In the case of C#, this would result in size constraint checks being added to the generated encode and decode
methods for the type.

Another common example of parameterization isthe substitution of a given typeinside acommon container type. For
example, security specifications frequently contain a‘signed’ parameterized type that allows a digital signature to be
applied to other types. An example of this would be as follows:

SIGNED { ToBeSi gned } ::= SEQUENCE {
t oBeSi gned ToBeSi gned,
algorithmd D OBJECT | DENTI FI ER,
par ant Par ans,
si ghature BI T STRI NG

}

An example of areference to this definition would be as follows:
Si gnedNane ::= SIGNED { Nane }
where ‘Name' would be another type defined el sewhere within the module.
ASN1C performs the substitution to create the proper C# class definition for SignedName:

public class SignedNane : AsnlType {
public Nanme toBeSi gned;
public Asnlojectldentifier algorithnOD,
public Parans parant;
public AsnlBitString signature;

}

When processing parameterized type definitions, ASN1C will first look to see if the parameters are actually used
in the final generated code. If not, they will smply be discarded and the parameterized type converted to a normal
type reference. For example, when used with information objects, parameterized types are frequently used to pass

64

ASN.1 Type to C# Class Mappings

information object set definitions to impose table constraints on the final type. Since table constraints do not affect
the code that is generated by the compiler, the parameterized type definition is reduced to a normal type definition
and references to it are handled in the same way as defined type references. This can lead to asignificant reductionin
generated code in cases where a parameterized type is referenced over and over again.

For example, consider the following often-repeated pattern from the UMTS 3GPP specs:

Prot ocol | E-Fi el d { RANAP- PROTOCCOL- | ES : | EsSet Paran} ::= SEQUENCE {
id RANAP- PROTOCOL- | ES. & d ({! EsSet Paran),
criticality RANAP- PROTOCOL- | ES. &criticality ({IEsSetParant{@d}),
val ue RANAP- PROTOCCOL- | ES. &Val ue ({I EsSet Param}{ @ d})
}

In this case, |EsSetParam refers to an information object set specification that constrains the values that are passed
for any given instance of atype referencing a Protocol | E-Field. The compiler does not add any extra code to check
for these values, so the parameter can be discarded. After processing the Information Object Class references within
the construct (refer to the Information Objects section for information on how thisis done), the reduced definition for
Protocol | E-Field becomes the following:

Protocol I E-Field ::= SEQUENCE {
id Protocol | E-1D,
criticality Criticality,
val ue ASN. 1 OPEN TYPE

}

Referencesto the field are simply replaced with areference to the generated Protocol ID-Field class.

Value Specifications

The ASN1C compiler can parse any type of ASN.1 value specification, however, the basic version will only generate
code for the following types of value specifications:

« BOOLEAN

* INTEGER

« ENUMERATED

* Binary String

* Hexadecima String

» Character String

* OBJECT IDENTIFER
The Pro version of the compiler will generate code for the following remaining types of value specifications:
* Enumerated

* Readl

* Sequence

. Set

» Sequence Of

65

ASN.1 Type to C# Class Mappings

* Set Of
» Choice

If any of the above types of value specifications are detected in an ASN.1 module, the compiler will generate a C#
source file with a specia class to hold the values. The name of the source file and classis of the following format:

_<Mbdul eNane>Val ues

In this definition, <ModuleName> would be replaced with the name of the ASN.1 module in which the values are
defined.

The following sections provide details on the C# constants generated for the various types of ASN.1 value specifica
tions.

INTEGER Value Specification

An INTEGER value specification causes a C# integer constant to be generated. stant to be generated.
ASN.1 production:

<nanme> | NTEGER :: = <val ue>
Generated C# constant:

public static readonly int <name> = <val ue>;

BOOLEAN Value Specification

A BOOLEAN value specification causes a C# boolean constant to be generated.
ASN.1 production:

<nanme> BOCLEAN ::= <val ue>
Generated C# constant:\

public static readonly bool <nane> = <val ue>;

Binary String Value Specification

This value specification causes two C# constants to be generated: a ‘numbits' constant specifying the number of bits
inthe string and a‘ data’ constant that hold the actual bit values.

ASN. 1 production:
<nanme> BI T STRING ::= ‘ bbbbbbb’ B
Generated C# constants:

public static readonly int <name> nunbits = <nunbits>;
public static readonly byte[] <name> data = { Oxhh, Oxhh, ... };

In the ASN.1 production definition, the lowercase ‘b’s above represent binary digits (1's or 0's). The generated code
contains anumbits constant set to the number of bits (binary digits) in the string. The data constant specifiesthe binary
data using hexadecimal byte values.

66

ASN.1 Type to C# Class Mappings

Hexadecimal String Value Specification

This value specification causes a C# constant to be generated containing a byte array of the hexadecimal byte values.
ASN.1 production:

<name> OCTET STRING ::= *hhhhhh' H
Generated C# constants:

public static readonly byte[] <name> = { Oxhh, Oxhh, ... };

In the ASN.1 production definition, the lowercase ‘h’'s above represent hexadecimal digits (0-9, af, or A-F). The
generated constant specifies the binary data using hexadecimal byte values.

Character String Value Specification

A character string declaration causes a C# String constant to be generated.
ASN.1 production:

<name> <StringType> ::= ‘ccccccc’
Generated C# constants:

public static readonly string <name> = “ccccccc”;

In the ASN.1 production definition, <StringType> would be replaced with one of the ASN.1 character string types
(for example, IA5String). The lowercase ‘ ¢'s represent string characters. The generated constant is simply the string
in C# form.

Object Identifier Value Specification

An object identifier value specification causes a C# integer array to be generated containing the subidentifier values.
ASN.1 production:
<name> OBJECT | DENTI FI ER :: = <oi dval ue>
Generated C# constants:
public static readonly int[] <nanme> = { idl, id2, ., idn };
For example, consider the following declaration:
oid OBJECT IDENTIFIER ::= { ccitt b(5) 10 }
Thiswould result in the following C# constant being generated:

public static readonly int[] oid ={ 0, 5, 10 };

ENUMERATED Value Specification

An ENUMERATED value specification causes a reference to an enumerated singleton to be generated.

ASN.1 production:

67

ASN.1 Type to C# Class Mappings

<nanme> <enumtype> ::= <enumtenp
Generated C# constants:
public static readonly <enunmtype> <name> = <enunti nme>. Val ued (<enumval ue);

enumvalue will be the sequential integer value corresponding to the enumitem in enumtype.

REAL Value Specification

A REAL value specification causes a C# double constant to be generated.
ASN.1 production:

<name> REAL ::= <val ue>
Generated C# constants:

public static readonlyreadonly doubl e <name> = <val ue>;

SEQUENCE Value Specification

A SEQUENCE value specification causes a readonly static instance of the C# class generated for the SEQUENCE
to be generated.

ASN.1 production:
<nane> <SequenceType> ::= <val ue>
Generated C# constants:

public static readonly <SequenceType> <name> =
new <SequenceType> (new <El emlType> (<el emlval ue>),
new <El enR2Type> (<el enRval ue>),

)

For example, consider the following declaration:

SeqType ::= SEQUENCE {
oid OBJECT | DENTI FI ER,
id | NTEGER
}
val ue SeqType ::={ oid { 0111}, id 12}

Thiswould result in the following C# constant being generated for value:

public static readonly SeqType val ue = new SeqType (
new AsnlQbjectldentifier(newint[]{0, 1, 1}),
new Asnll nt eger (12)

);
SET Value Specification

The value code generation for the ASN.1 SET type is that same as that for SEQUENCE described above.

68

ASN.1 Type to C# Class Mappings

SEQUENCE OF Value Specification

A SEQUENCE OF value specification causes a C# array constant to be generated.
ASN.1 production:
<name> <SequenceCf Type> ::= <val ue>
Generated C# constants:
public static readonly <SequenceX Type> <name> =
new <SequenceO Type>[] {

new <El eniType> (<el enlval ue>),
new <El eniType> (<el enRval ue>),

b
For example, consider the following declaration:
SeqOf Type ::= SEQUENCE OF | NTEGER
val ue SeqOf Type ::={ 1, 2}
Thiswould result in the following C# constant being generated for value:

public static readonly SeqOf Type val ue = new SeqO Type[] {
new Asnll nteger (1),
new Asnll nt eger (2)

1
SET OF Value Specification

The value code generation for the ASN.1 SET OF type isthat same as that for SEQUENCE OF described above.

CHOICE Value Specification

A CHOICE value specification causes a readonly static instance of the C# class generated for the CHOICE to be
generated.

ASN.1 production:
<nanme> <Choi ceType> ::= el emane : <el enval ue>
Generated C# constants:

public static readonly <Choi ceType> <nane> =
new <Choi ceType> (<El enCode>,
new <El enifype> (<el enmval ue>));

For example, consider the following declaration:
Choi ceType ::= CHO CE { oid OBJECT IDENTIFIER, id | NTEGER }
val ue ChoiceType ::=id: 1

Thiswould result in the following C# constant being generated:

69

ASN.1 Type to C# Class Mappings

public static readonly ChoiceType val ue =
new Choi ceType (Choi ceType. I D, new Asnllnteger(1));

70

Chapter 6. Generated BER/DER/CER
Encode Methods

Two different types of BER (Basic Encoding Rules) encode methods may be generated using the ASN1C compiler:
» Memory-buffer based definite length backward encoders
* Stream-based indefinite length forward encoders

For DER (Distinguished Encoding Rules), only the first option is available because a requirement of DER is that all
lengths must be in definite form. For CER (Canonical Encoding Rules), only the second option is available because all
constructed element lengths must be in indefinite length form. Each of these methods are described in the following
sections.

Memory-buffer Based Definite Length En-
coders

For each ASN.1 production defined in the ASN.1 source file, a C# memory-buffer based encode method may be
generated. These are the default type of encode methods that are generated when the -ber command-line option is
selected. To generate stream-based forward encoders, the -stream option must be specified as well.

Anencode method isonly generated if it isrequired to alter the encoding of the base class method. The C# model isbuilt
on inheritance from a set of common run-time base classes. These run-time classes contain default implementations of
encode/decode methods that handle the encoding/decoding of the basic types. These default implementations include
support for adding the universal tags associated with the types as defined in the X.680 standard.

So for simple assignments, the generation of an encode method isnot necessary. For example, thefollowing production
will not result in the generation of an encode method:

X 1= I NTEGER

In this case, the generated C# class inherits the Asnllnteger base class and the default encode method within this class
is sufficient to encode a value of the generated type.

However, if the type is altered to contain atag or constraint, then a custom encode method would be generated:
X ::= [APPLI CATI ON 1] | NTEGER
In this case, special logic is necessary to apply the tag value.

Some types will always cause encode methods to be generated. At the primitive level, thisis true for the ENUMER-
ATED type. This type will always contain a custom set of enumerated values. All constructed types (SEQUENCE,
SET, SEQUENCE/SET OF, and CHOICE) will cause encode methods to be added to the generated classes.

Generated C# Method Format and Calling Parameters

The signature for a C# BER memory buffer encode method is as follows:
public override int Encode (AsnlBer EncodeBuffer buffer, bool explicitTaggi ng)

The buffer argument is a reference to an Asn1BerEncodeBuffer object that describes the buffer into which a message
is being encoded. This must be created and initialized before calling any encode method. See the description of this
classin the C# Run-Time Classes section for details on how this classis used.

71

Generated BER/DER/CER Encode Methods

The explicitTagging argument specifies whether or not an explicit tag should be applied to the encoded contents. The
average user will almost always want to set this argument to true. The only time it would not be set to true isif auser
wanted to just encode a contents field with no tag. This argument is used primarily by the compiler when generating
internal callsto properly handle implicit and explicit tagging.

The return value is the length in octets of the encoded message component. Unlike the C/C++ version, a negative
value is never returned to indicate an encoding failure. That is handled by the exception mechanism. All ASN1C
CH# exceptions are derived from the Asn1Exception base class. See the section on exceptions for a complete list and
description of the various exceptions that can be thrown.

Populating Generated Variables for Encoding

Populating generated variablesfor encoding can be donein most cases either through the object constructorsor directly
by assigning an object reference to a public member variable.

Constructors are provided for most generated types to allow direct population of the encapsulated member variable(s)
on initialization. The exception is the classes generated for SEQUENCE OF or SET OF. These only allow the size of
an array to be specified — population of the array elements must be done manually.

All of the base run-time classes except Asn1Null contain public member variables. In practically all casesthereisa
single variable called mValue that is of the base type that needs to be populated. For example, the Asnlinteger base
class contains the following item:

public | ong nVal ue;

Therefore, population of any class variable derived from INTEGER can be done by adding.mValue to the end of the
lefthand side of the assignment and an integer value on the right. So for the following assignment:

X 1= I NTEGER

A variable of the type can either be populated using the constructor with the following statement:
X x = new X (25);

or viadirect access of the member variable asfollows:

X x = new X ();
X. nvVal ue = 25;

The only primitive type that does not have a single member called mValue to represent itsvalue isBIT STRING. In
this case, the Asn1BitString class contains a second variable called numbits to specify the number of bitsin the string.

Procedure for Calling Memory-Buffer Based BER En-
code Methods

Once an object’s member variables have been populated, the object’s encode method can be invoked to encode the
value. The general procedure to do thisinvolves the following three steps:

1. Create an encode message buffer object into which the value will be encoded.
2. Invoke the encode method.
3. Invoke encode message buffer methods to access the encoded message component.

Thefirst step isthe creation of an encode message buffer object. Unlike the C/C++ version of the product, thereis no
choice to be made between a static or dynamic encode buffer. In C#, everything is dynamic. There are two forms of
the constructor: a default constructor and one that allows specification of a message buffer size increment. The size

72

Generated BER/DER/CER Encode Methods

increment will determine how often the buffer will need to be resized to hold large messages. If you know that you
will be encoding large messages, then this object should be constructed with a large value for the increment. If you
know that you will be encoding small messages in a constrained environment, then this value can be set very low. The
default constructor sets the value to areasonable mid-range value (see SIZE_INCREMENT in AsnlEncodeBuffer.cs,
as of thiswriting the value was set to 1024).

The second step is the invocation of the encode method. The calling arguments were described earlier. As per the C#
standard, this method must be invoked from within a try/catch block to catch the possible Asn1Exception that may be
thrown. Alternatively, the method from which the encode method is called can declare that it throws an Asn1Exception
leaving it to be dealt with at a higher level.

Finally, encode buffer methods can be called to access the encoded message component. The encode method itself
returns the length of the component, so thisitem is already known (however, there is a MsglLength property available
if you want to access this length from a different location). Unlike C or C++, a pointer to where the message startsin
the encode buffer cannot be returned (recall that BER encoding is done from back to front, so a message rarely starts
at the beginning of a buffer). However, the C# API provides an object called a ByteArrayl nputSream that provides
away to look at the encoded component as a stream. The encode buffer object therefore provides a property called
ByteArrayl nputSream which is the preferred way to access the encoded component.

In addition to ByteArrayl nputStream there is a MsgCopy property that will retrieve a copy of the generated message
into a byte array object. This is somewhat slower because a copy needs to be done. The encode buffer class also
contains other methods for operating directly on the encoded component (for example, the write method can be used
to writeit to afile or other medium). And of course, one could derive their own special encode buffer class from this
class to add more functionality. See the description of the Asn1BerEncodeBuffer class in the run-time section for a
full description of the available methods.

A complete example showing how to invoke an encode method is as follows:

/'l Note: personnel Record object was previously populated with data

/Il Step 1. Create a message buffer object. This object uses the
/'l default size increment for buffer expansion..

AsnlBer EncodeBuf f er encodeBuffer = new AsnlBer EncodeBuffer();

/1l Step 2: Invoke the encode nethod. Note that it nust be done
/[l fromwithin a try/catch bl ock. .

try {
per sonnel Recor d. Encode (encodeBuffer, true);

if (trace) {
System Consol e. Qut. WitelLine ("Encodi ng was successful ");
System Consol e. Qut. WiteLine ("Hex dunp of encoded record:");
encodeBuf f er. HexDump () ;
System Consol e. Qut . WiteLine ("Binary dunp:");
encodeBuf fer. Bi nDunmp ();

/1l Step 3: Access the encoded nmessage conponent. In this

/]l case, we use nethods in the class to wite the conponent
/[l to afile and output a formatted dunp to the nmessage. dnp
Il file..

I/ Wite the encoded record to a file

73

Generated BER/DER/CER Encode Methods

encodeBuffer. Wite(new System | O Fil eSt rean(
filenanme, System 1O FileMde.Create));

/]l Generate a dunp file for conparisons

System | O StreanWWiter nmessagednp =
new System |1 O StreamWiter(new System | O Fil eStream
"message. dmp", System | O Fil eMbde. Create));
messagednp. Aut oFl ush = true;
encodeBuf f er . HexDunp(messagednp) ;
}
catch (Exception e) {
System Consol e. Qut. Wi telLine (e. Message);
AsnlUtil.WiteStackTrace(e, Console.Error);
return;

}

Reuse of C# Encoding Objects

The simple example above showed the procedure to encode a single record. But what if you had to decode a series of
the same record over and over again? Thisis a common occurrence in a BER encoding application.

Y ou would not want to recreate the data holder and message buffer objects on each pass of the loop. Thiswould have
an adverse effect on the performance of the application. What you would want to do is only create the objectsasingle
time and then reuse them to encode each message instance.

It turns out that thisis an easy thing to do. The public member variable access to the data holder object makesit easy
to change the variables on each given pass. And the encode buffer object contains a Reset method for resetting the
encode buffer for subsequent encodings. The use of this method has the advantage of not releasing any of the memory
that had been accumulated to this point for previous encodings.

To show an example of object reuse, suppose we were going to encode a series of names. The ASN.1 type for the
names would be as follows:

Name ::= [APPLI CATION 1] I MPLICI T SEQUENCE {
gi venNanel A5Stri ng,
initial 1A5String,
fam | yNamel A5String

}

The generated C# class would contain public member variables for each of the string objects:

public Asnll A5String gi venNaneg;
public Asnll A5String initial;
public Asnll A5String fani | yNane;

The most efficient way to repopulate these variables within aloop would be simply to assign each of the new strings
to be encoded directly to the public mValue member variables contained within the Asn1lA5String objects (i.e., the
Name or AsnllA5Sring objects should not be reconstructed each time).

A code snippet showing how this could be done is as follows:

/1l Step 1: Create Nanme and AsnlBer EncodeBuffer objects for use in
/1 the |oop..

74

Generated BER/DER/CER Encode Methods

Nane nane = new Nane (“”, “", “”); [/ creates enpty string objects
AsnlBer EncodeBuf f er encodeBuffer = new AsnlBer EncodeBuffer ();

for (;;) {

/1 logic here to read nane conponents froma DB or other nedium

/1 popul ate string variables (assune stringl, 2, and 3 are string
/1 variables read from DB above)..

nane. gi venNane. nval ue = stringl;
nane.initial.nValue = string2;
nane. f am | yNane. nvVal ue = string3;

/'l encode

try {
| en = nanme. Encode (encodeBuffer, true);

/1 do sonething with the encoded nessage conponent

/1 reset encode buffer for next pass

encodeBuffer. Reset ();

}
catch (AsnlException e) {

/1 handl e error
}
}

Stream-Oriented Indefinite Length Encode
Methods

BER messages can be encoded directly to an output stream such as afile, network or memory stream. The ASN1C
compiler has the —stream option to generate encode functions of this type. For each ASN.1 production defined in the
ASN.1 sourcefile, a C# encode method may be generated. Thisfunction will convert apopulated variable of the given
type into an encoded ASN.1 message.

The basic principles of the generation of the encode methods are the same as for the memory-buffer based BER/DER
encode methods described in the preceding section. Stream-oriented BER encoding starts from the beginning of the
message until the message is complete. Thisis sometimes referred to as “forward encoding”. This differs from mem-
orybuffer based BER where encoding that is done from back-to-front. Indefinite lengths are used for all constructed
elementsin the message. Also, thereisno permanent buffer for stream-oriented encoding, all octets arewritten directly
to the output stream.

Generated C# Method Format and Calling Parameters

The signature for a C# BER stream-oriented encode method is as follows:

75

Generated BER/DER/CER Encode Methods

public override void Encode (AsnlBer QutputStream outs, bool explicitTaggi ng)

The outs argument is a reference of an Asnl1BerOutputSream object that describes the output stream into which a
message is being encoded. This must be created and initialized before calling any encode method. See the description
of this classin the C# Run-Time Classes section for details on how this classis used.

The explicitTagging argument specifies whether or not an explicit tag should be applied to the encoded contents. The
average user will almost always want to set this argument to true. The only time it would not be set to trueisif auser
wanted to just encode a contents field with no tag. This argument is used primarily by the compiler when generating
internal callsto properly handle implicit and explicit tagging.

Unlike the C/C++ version, a negative value is never returned form encode methods to indicate an encoding failure.
That is handled by the exception mechanism. All ASN1C C# exceptions are derived from the AsnlException base
class. See the section on exceptions for a complete list and description of the various exceptions that can be thrown.
If an 1/O error occurs then the System.Exception is thrown.

Procedure for Calling C# BER Stream-Oriented Encode
Methods

Once an object’s member variables have been populated, the object’s encode method can be invoked to encode the
value. The general procedure to do this involves the following three steps:

1. Create an output stream object into which the value will be encoded
2. Invoke the encode method
3. Close the output stream.

The first step is the creation of an output stream object. There are two forms of the constructor: a constructor with
one parameter (System.lO.Sream reference) and one that allows specification of an interna buffer size. A larger
internal buffer size generally provides better performance at the expense of increased memory consumption. Thefirst
constructor sets the value to areasonable mid-range value.

The second step is the invocation of the Encode() method. The calling arguments were described earlier. As per the
C# standard, this method must be invoked from within a try/catch block to catch the possible AsnlException and
System.Exception, which may bethrown. Alternatively, the method from which the encode method is called can declare
that it throws Asnl1Exception and System.Exception leaving it to be dealt with at a higher level.

Finally, close the output stream.

A complete example showing how to invoke a stream-based encode method is as follows:

/'l Note: personnel Record object was previously populated with data

AsnlBer Qut put Stream outs = nul | ;

try {
/]l Step 1. Create an output stream object. This object uses the

/1l default size increment for buffer expansion..

outs = new AsnlBer Qut put Stream (new System | O Fil eStrean(
filenane, System 1O FileMde.Create));

/1l Step 2: Invoke the encode nethod. Note that it nust be done
/1 fromwithin a try/catch bl ock. .

76

Generated BER/DER/CER Encode Methods

per sonnel Recor d. Encode (outs, true);

if (trace) {
System Consol e. Qut. Wi telLine ("Encodi ng was successful ");
System Consol e. Qut. WiteLine ("Hex dunp of encoded record:");
encodeBuf f er . HexDump () ;
System Consol e. Qut . WiteLine ("Binary dunp:");
encodeBuf fer. Bi nDunmp ();
}
}
catch (Exception e) {

System Consol e. Qut. WiteLine (e. Message);
AsnlUtil.WiteStackTrace(e, Console.Error);

return;
}
finally {
/1l Step 3: Close the output stream if opened
try {
if (outs !'= null)
outs. d ose ();
}
catch (Exception e) {}
}

If you compare this example with the BER encoding example in Figure 1, you will see the encoding procedure is
almost identical. This makes it very easy to switch encoding methods should the need arise. All you need to do is
change Asn1Ber EncodeBuffer to Asn1Ber OutputSream and remove the explicit code that writes the messagesinto the
stream. Also closing of the stream should be added.

77

Chapter 7. Generated BER/DER/CER
Decode Methods

For each ASN.1 production defined inthe ASN.1 sourcefile, a C# decode method may be generated. This method will
decode an ASN.1 message into public member variables within the C# object.

As was the case for encode methods, a decode method is only generated if it is required to ater the default method
in the base class. The C# model is built on inheritance from a set of common run-time base classes. These run-time
classes contain default implementations of encode/decode methods that handle the encoding/decoding of the basic
types. These default implementations include support for handling the universal tags associated with the types as
defined in the X.680 standard.

Generated C# Method Format and Calling Para-
meters

The signature for a C# BER decode method is as follows:

public override void Decode (AsnlBerDecodeBuffer buffer, bool explicitTagging,
int inplicitLength)

Thebuffer argument isareference of an Asn1Ber DecodeBuffer object that describesthe messagethat isbeing decoded.
This must be created and initialized before calling any decode method. See the description of this classin the C# Run-
Time Classes section for details on how this classis used.

The explicitTagging and implicitLength arguments specify whether or not an explicit tag should be parsed from the
encoded contents. The average user will almost always want to set explicitTagging to true and implicitLength to zero.
The only time these arguments would not be set thisway isif a user wanted to directly decode contents with no tag/
length information. These arguments are used primarily by the compiler when generating internal calls to properly
handle implicit and explicit tagging.

The decode method returns no result. Unlike the C/C++ version, a negative status value is not returned to indicate a
failure. That is handled by the exception mechanism. All ASN1C C# exceptions are derived from the Asn1Exception
base class. See the section on exceptions for a complete list and description of the various ASN.1 exceptions that can
be thrown. The System.Exception that can be thrown is in the Read method within the decode buffer base class, for
any 10 errors. This method attempts to read data from an input stream using the methods in the System.|O.Sream.

Procedure for Calling C# BER Decode Methods

The general procedure to decode an ASN.1 BER message involves the following three steps:
1. Create a decode message buffer object to describe the message to be decoded

2. Invoke the decode method

3. Process the decoded data values

Thefirst step isthe creation of adecode message buffer object. The Asn1Ber DecodeBuffer object contains constructors
that can either accept a message as a byte array or as an 1/O input stream. The input stream option makes it possible
to decode messages directly from other mediums other than amemory buffer (for example, amessage can be decoded
directly from afile).

78

Generated BER/DER/CER Decode Methods

The Asn1Ber DecodeBuffer object contains a method called PeekTag that can be used to determine the outer-level tag
on amessage. This can be used to determine the type of message received in applications that must deal with multiple

message types.

Thefinal step isto processthe data. All datais contained within public member variables so accessis quite easy. And
of course C# has the distinct advantage of not requiring any clean-up once you are done with the data. The garbage
collector will collect the unused memory when it is no longer referenced.

A complete example showing how to invoke a decode method is as follows:

try {

/]l Step 1. create a decode nessage buffer object to describe the
/'l nmessage to be decoded. This exanple will use a file input
/] streamto decode a nessage directly froma binary file..

/1l Create an input file stream object

System IO FileStreamins = new System | O Fil eSt rean
filenane, System 1O Fil eMbde. Open, System | O Fil eAccess. Read);

/'l Create a decode buffer object
AsnlBer DecodeBuf f er decodeBuffer = new AsnlBer DecodeBuffer (ins);

/]l Step 2: create an object of the generated type and i nvoke the
/| decode nethod. .

Per sonnel Record personnel Record = new Personnel Record ();
per sonnel Recor d. Decode (decodeBuffer);

/]l Step 3: process the data

if (trace) {
System Consol e. Qut. WiteLine ("Decode was successful");
per sonnel Record. Print ("personnel Record");

}

}
catch (Exception e) {

System Consol e. Qut. WiteLine (e. Message);
AsnlUtil.WiteStackTrace(e, Console.Error);
return;

}

Reuse of C# Decoding Objects

The sample above showed the BER decoding of a single message. In atypical application, aloop would be involved
to decode a series of messages. While it would be possible to use the code shown above in a loop, it would not be
the most efficient way to decode the messages. Objects should be reused where possible to avoid the overhead of
excessive memory allocations and garbage collection.

A single decode buffer object can be used to process a stream of messages. If the decode message buffer is created
using an input stream object that contains a series of messages (for example, a file containing multiple records or a

79

Generated BER/DER/CER Decode Methods

communications device), al that needs to be done is the continuous invocation of the BER decode method for the
given message type.

Nothing special needs to be done to reuse the generated type object for decoding. The decoder will automatically all
the internal Init() method before decoding to make sure al items are reset to their starting state.

In the example above, all that would need to be done to decode a series of personnel recordsis the inclusion of aloop
after the Personnel Record object was created in step 2:

for () {

per sonnel Recor d. Decode (decodeBuffer);

if (trace) {
System Consol e. Qut . WitelLine ("Decode was successful");
per sonnel Record. Print ("personnel Record");

}
Deferred Decoding and Partial Decoding

Another way to improve decoding performance of large messages is through the use of either deferred decoding or
partial decoding. This alows for the selective decoding of only parts of a message in a single decode function call.
This can significantly reduce decoding time because large parts of messages can be skipped.

Deferred decoding can be done on elements defined within a SEQUENCE, SET or CHOICE construct. It is done by
designating an element to be an open type by using the <isOpenType/> configuration setting. This setting causes the
ASNI1C compiler to insert an Asn1OpenType placeholder in place of the type that would have normally been used
for the element. The data in its original encoded form will be stored in the open type container when the message is
decoded. The data within the open type container can be fully decoded later by using the normally-generated decode
function generated by the ASN1C compiler. (This stands in contrast to C and C++ code generation, which requires
aspecia decode function for this purpose.)

Partial decoding is similar to deferred decoding, except that where deferred decoding captures the encoded data for
later decoding, partial decoding skips over it and discards the encoded data. Since the encoded data is not retained,
partial decoding usesless memory. Partial decoding isdone by designating an element to be skipped using the <skip/>
configuration setting. This setting causesthe ASN1C compiler to generate decodersthat simply skip over that element.

In following example, decoding of the element id is deferred, while detailsis skipped:

Identifier ::= SEQUENCE ({
i d | NTEGER,
oi d OBJECT | DENTI FI ER,
details Detail edStuff

}

The following configuration file is required to indicate the element id is to be processed as an open type (i.e. that it
will be decoded later) and that element details should be skipped:

<asnlconfi g>
<nmodul e>
<name>nodul enane</ nane>
<pr oduct i on>
<name>l denti fi er </ nanme>
<el enent >
<name>i d</ nane>

80

Generated BER/DER/CER Decode Methods

<i sOpenType/ >
<el enent/ >
<el enent >
<name>det ai | s</ nane>
<ski p/ >
<el enent/ >
<pr oducti on/ >
<nmodul e/ >
<asnlconfig/ >

In the generated code, the element id type will be replaced with an open type (Asn1OpenType), and the type will be
decoded as such. When the top-level decoding has finished, the element may be decoded by taking the open type value
(id.value) and using it as a source for a new Asnl1BerDecodeBuffer. The element can then be decoded by creating a
new object for the element (in this case, a new instance of Asn1Objectlidentifier) and calling its decode method. The
element details will simply be skipped.

81

Chapter 8. Generated PER Encode Methods

The generation of methods to encode data in accordance with the Packed Encoding Rules (PER) is similar to how
methods were generated in the BER/DER case discussed previously. For each ASN.1 production defined inthe ASN.1
source file, a C# encode method may be generated. This function will convert a populated variable of the given type
into an encoded ASN.1 message.

Anencode method isonly generated if it isrequired to alter the encoding of the base class method. The C# model isbuilt
on inheritance from a set of common run-time base classes. These run-time classes contain default implementations
of encode/decode methods that handle the encoding/decoding of the basic types.

For simple assignments, the generation of an encode method is not necessary. For example, the following production
will not result in the generation of an encode method:

X 1= I NTEGER

In this case, the generated C# class inherits the Asnllnteger base class and the default encode method within this class
is sufficient to encode a value of the generated type.

In the case of BER/DER, a custom encode method is generated if a) the type is tagged, or b) it contains a testable
constraint. In the case of PER, only the latter condition will cause a custom method to be generated. The reason is
because PER basically ignores the tags on tagged types and they therefore have no effect on the final encoded message
component.

For example, the following declaration will cause a custom encode method to be generated because the value range
congtraint is a PER-visible constraint that will alter the encoding:

X ::= I NTEGER (1..255)
In this case, specia logic is necessary to apply the value range constraint. Some types will always cause encode
methodsto be generated. At the primitivelevel, thisistruefor the ENUMERATED type. Thistypewill always contain

acustom set of enumerated values.

All constructed types (SEQUENCE, SET, SEQUENCE/SET OF, and CHOICE) will cause encode methods to be
added to the generated classes.

Generated C# Method Format and Calling Para-
meters

The signature for a C# PER encode method is as follows:
public override void Encode (AsnlPerEncodeBuffer buffer)

The buffer argument is areference of an Asn1PerEncodeBuffer object that describes the buffer into which a message
is to be encoded. This must be created and initialized before calling any encode method. See the description of this
classin the C# Run-Time Classes section for details on how this classis used.

The PER encode methods do not return a value. This is different than the C/C++ version that returns a negative
status value to indicate an encoding failure. For C#, errors are reported via the exception mechanism. All ASN1C
C# exceptions are derived from the AsnlException base class. See the section on exceptions for a complete list and
description of the various exceptions that can be thrown.

82

Generated PER Encode M ethods

Procedure for Calling C# PER Encode Methods

The C# class variables corresponding to each of the ASN.1 types and method of population are the same as they were
in the BER encoding case. See the section on BER encoding for instructions on how to populate the variables prior
to encoding.

Once an object’s member variables have been populated, the object’s encode method can be invoked to encode the
value. The general procedure to do thisinvolves the following three steps:

1. Create an encode message buffer object into which the value will be encoded
2. Invoke the encode method
3. Invoke encode message buffer methods to access the encoded message component

The first step is the creation of an encode message buffer object. For PER encoding, this is an object of the
Asn1PerEncodeBuffer class. The following constructors are available for creating a PER encode buffer object:

publ i c AsnlPer EncodeBuffer (bool aligned);

public AsnlPer EncodeBuffer (bool aligned, int sizelncrenment);

The first argument indicates whether PER aligned or unaligned encoding should be done. The second form of the
constructor contains a size increment argument. This argument will determine how often the buffer will need to be
resized to hold large messages. If you know that you will be encoding large messages, then this object should be
constructed with alarge valuefor theincrement. If you know that you will be encoding small messagesin aconstrained
environment, then this value can be set very low. The default constructor sets the value to a reasonable mid-range
value (see SIZE_INCREMENT in Asn1EncodeBuffer.cs, as of thiswriting the value was set to 1024).

The second step is the invocation of the encode method. The calling arguments were described earlier. As per the
C# standard, this method must be invoked from within atry/catch block to catch the possible exceptions that may be
thrown. Alternatively, the method from which the encode method is called can declare that it throws an Asn1Exception
leaving it to be dealt with at a higher level.

Finally, encode buffer methods can be called to access the encoded message component. The C# APl provides an
object called a ByteArrayl nputStream that provides a way to look at the encoded component as a stream. The encode
buffer object provides amethod called GetlnputStreamthat returns a byte array input stream representing the message
component. Thisisthe preferred way to access the encoded component.

In addition to GetlnputSream there is a MsgCopy property that will retrieve a copy of the generated message into a
byte array object. This is somewhat slower because a copy needs to be done. Another option that is only available
when doing PER encoding is the Buffer property. This returns a reference to the actual message buffer into which
the message was encoded. Since a PER message is encoded front-to-back (unlike the back-to-front used in BER/DER
encoding), the buffer reference returned will point to the start of the encoded message. The MsgByteCnt property can
then be used to get the message length in bytes or the MsgBitCnt property can be called to get the length in bits.

The encode buffer class also contains other methods for operating directly on the encoded component (for example,
the write method can be used to write it to afile or other medium). And of course, one could derive their own special
encode buffer class from this class to add more functionality. See the description of the Asn1PerEncodeBuffer class
in the runtime section for a full description of the available methods.

A complete example showing how to invoke a PER encode method is as follows:

/'l Note: personnel Record object was previously populated with data

I/l Step 1. Create a message buffer object. This object uses the

83

Generated PER Encode M ethods

/1l default size increment for buffer expansion..

AsnlPer EncodeBuf f er encodeBuffer = new AsnlPer EncodeBuffer();

/1l Step 2: Invoke the encode nethod. Note that it nust be done
/1 fromwithin a try/catch bl ock. .

try {
per sonnel Recor d. Encode (encodeBuffer);

}

i f

}

11
11
11
11

11

(trace) {

System Consol e. Qut. WitelLine ("Encodi ng was successful ");
System Consol e. Qut. WiteLine ("Hex dunp of encoded record:");
encodeBuf f er . HexDump () ;

System Consol e. Qut. WiteLine ("Binary dunp:");

encodeBuf f er. Bi nDunp (" personnel Record”);

Step 3: Access the encoded nessage conponent. In this
case, we use nmethods in the class to wite the conponent
to a file and output a formatted dunp to the nessage. dnp
file..

Wite the encoded record to a file

encodeBuffer. Wite(new System | O Fil eSt rean(

11

filenanme, System 1O FileMde.Create));

Cenerate a dunp file for conparisons

System 1 O StreanWWiter nmessagednmp =

new System 1O StreamWiter(new System 1O Fil eStrean(
"message. dmp", System | O Fil eMbde. Create));

messagednp. Aut oFl ush = true;
encodeBuf f er . HexDunp(messagednp) ;

11

We can al so directly access the buffer as foll ows:

byte[] buffer = encodeBuffer.Buffer;
int nmeglen = encodeBuffer.MsgByteCnt;

catch (Exception e) {

System Consol e. Qut. WiteLine (e. Message);
AsnlUtil.WiteStackTrace(e, Console.Error);
return;

}

If you comparethis examplewith the BER encoding examplein Figure 1, you will seethe encoding procedureisalmost
identical. This makes it very easy to switch encoding methods should the need arise. All you need to do is change
Asn1Ber EncodeBuffer to AsnlPerEncodeBuffer and remove the explicit argument from the encode method call.

Reuse of C# Encoding Objects

The concept of reusing C# objects for PER encoding is the same as was described previously for BER encoding.
Basically, all that needs to be done is the creation of a single PER encode buffer object and an object corresponding

84

Generated PER Encode M ethods

to the ASN.1 data type to be encoded outside of the processing loop. These objects can then be reused to encode each

instance of the messages to be sent. After each message is encoded, the PER buffer must be reset for the next message
by using the Reset method. See the section on reuse of objects in the BER encoding section for a more thorough
discussion and sample code on using this capability.

85

Chapter 9. Generated PER Decode Methods

For each ASN.1 production defined in the ASN.1 sourcefile, a C# decode method may be generated. This method will
decode an ASN.1 message into public member variables within the C# object.

As was the case for encode methods, a decode method is only generated if it is required to alter the default method in
thebase class. The C# model isbuilt oninheritance from a set of common run-time base classes. These run-time classes
contain default implementations of encode/decode methods that handle the encoding/decoding of the basic types.

For primitive types, a custom PER decode method is only generated if one or more of the following istrue:
1. Thetype contains a PER-visible constraint
2. The generation of event handlers was specified

The exception to thisrule is the ENUMERATED primitive type (or likewise, INTEGER type with a named number
list) that will always cause a decode method to be generated.

Constructed types will always cause custom PER decode methods to be generated.

Generated C# Method Format and Calling Para-
meters

The signature for a C# PER decode method is as follows:\
public override void Decode (AsnlPerDecodeBuffer buffer)

Thebuffer argument isareference of an Asn1Per DecodeBuffer object that describesthe message that isbeing decoded.
Thismust be created and initialized before calling any decode method. See the description of this classin the C# Run-
Time Classes section for details on how this classis used.

The decode method returns no result. Unlike the C/C++ version, a negative status value is not returned to indicate a
failure. That is handled by the exception mechanism. All ASN1C C# exceptions are derived from the Asn1Exception
base class. See the section on exceptions for a complete list and description of the various ASN.1 exceptions that can
be thrown. The System.Exception that can be thrown is in the read method within the decode buffer base class. This
method attempts to read data from an input stream using the methods in the System.1O.Stream class.

Procedure for Calling C# PER Decode Methods

The general procedure to decode an ASN.1 PER message involves the following three steps:
1. Create a decode message buffer object to describe the message to be decoded

2. Invoke the decode method

3. Process the decoded data values

Thefirst step isthe creation of adecode message buffer object. The Asn1Per DecodeBuffer object contains constructors
that can either accept a message as a byte array or as an 1/0 input stream. The input stream option makes it possible
to decode messages directly from other mediums other than amemory buffer (for example, amessage can be decoded
directly from afile or a socket).

Unlike BER or DER, no mechanism exists in PER to peek at an outer level tag or identifier to identify the message
type. This type must be known beforehand. Most protocols that employ PER have a specific outer level type know

86

Generated PER Decode Methods

as a “Protocol Data Unit” (PDU) that encompasses all of the different message types that might be received. Thisis
typically a CHOICE construct with each option representing a different type of message.

The generated decode method for the PDU is invoked to decode the message. The calling arguments were described
earlier. As per the C# standard, this method must be invoked from within a try/catch block to catch the possible
exceptions that may be thrown. Alternatively, the method from which the decode method is called can declare that it
throws the exceptions leaving them to be dealt with at a higher level.

Thefinal step isto process the data. All datais contained within public member variables so accessis quite easy. All
of the primitive datatype classes contain a public member variable called mValue that contains decoded data. This can
be accessed in nested structures by prefixing mValue with each of the element names from the top down. For example,
the givenName element in the Name type shown earlier would be accessed as follows: name.givenName.mValue (this
assumes an instance of the Name class was created using the variable name “name”).

A complete example showing how to invoke a decode method is as follows:

try {

/1l Step 1. create a decode nessage buffer object to describe the
/'l nmessage to be decoded. This exanple will use a file input
/1l streamto decode a nessage directly froma binary file..

/1l Create an input file stream object

System IO FileStreamins = new System | O Fil eSt rean(
filenane, System 1O Fil eMbde. Open, System | O Fil eAccess. Read);

/'l Create a decode buffer object
AsnlPer DecodeBuf f er decodeBuffer = new AsnlPer DecodeBuffer (ins);

/1l Step 2: create an object of the generated type and invoke the
/| decode nethod. .

Per sonnel Record personnel Record = new Personnel Record ();
per sonnel Recor d. Decode (decodeBuffer);

/1l Step 3. process the data

if (trace) {
System Consol e. Qut . WiteLine ("Decode was successful");
personnel Record. Print ("personnel Record");
}
}
catch (Exception e) {
System Consol e. Qut. WiteLine (e. Message);

AsnlUtil.WiteStackTrace(e, Console.Error);
return,;

}

Reuse of C# Decoding Objects

C# objects can be reused for decoding PER messages in the same way they were for BER messages. The decode
buffer and message type objects are created outside of the main decoding loop. Then inthe main loop these objects are

87

Generated PER Decode Methods

reused to process each input message. Data must be saved from the message type object after each iteration because
the contents of the object will be overwritten on each consecutive loop iteration. Nothing special needs to be done at
the bottom of the loop to ready the decoder for the next message. All necessary initialization will be handled internally.

88

Chapter 10. Generated XML Methods

Overview

X.693 specifies XER ("XML Encoding Rules"). There are three variants of XER given: BASIC-XER (often just XER
for short), canonical XER, and EXTENDED-XER. Into this mix, Objective Systems has added its own encoding rules
which we'll call OSys-XER. OSys-XER is very similar to XER, but has a few variations that are meant to produce
XML documents more closely aligned with what you might get if you were using XML Schema to specify your
abstract syntax. Generally, OSys-XER produces fewer tags. The differences between these two sets of encoding rules
are discussed in more detail below.

ASNI1C supports BASIC-XER, canonical XER, and OSys-XER. It has for some time supported EXTENDED-XER
viadirect compilation of XSD. In version 6.5.0, we have begun to add direct support for EXTENDED-XER by adding
support for some of the XER encoding instructions. Nonetheless, EXTENDED-XER is most fully support today via
direct compilation of XSD. By compiling X SD, you can obtain behavior much the same aswith OSys-X ER, and more.

ASN1C has two runtimes for XML:
e The"XER" runtime. Thisis used for basic and canonical XER.

* The"XML" runtime. Thisisused for OSys-XER and for EXTENDED-XER (whether compiling X SD or compiling
ASN.1 with XER encoding instructions).

Because these two runtimes are so similar, they are discussed in this chapter together. As you read this chapter, it is
important to keep in mind when each of these runtimes is used so that you know which cases apply to you.

Note that you may usethe -xsd switch when generating XML encoders and decoders. The XML schema produced from
the ASN.1 specification using the -xsd switch can be used to validate the XML messages generated using the XML
encode functions. Similarly, an XML instance can be validated using the generated XML schema prior to decoding.

Compiler Invocation What is Generated

-xer flag isused to compile ASN.1 without XER encoding | Generated code supports BASIC-XER and canonical XER
instructions

-xsd produces schema that validates BASIC-XER encod-
ings.

-xer or -xml flag is used to comple ASN.1 with support- | Generated code supports EXTENDED-XER only.
ed XER encoding instructions (if any instructions are not .
supported, all instructions areignored, and the above entry | -Xsd produces schema that validates EXTENDED-XER

in this table applies) encodings. As of thiswriting, thisis not fully supported.
-xml used to compile ASN.1 Generated code suppports OSys-X ER encodings.
-xsd produces schema that validates OSys-XER encod-
ings.
-xml used to compile XSD Generated code supports EXTENDED-XER only.

Differences between OSys-XER and XER
(BASIC-XER)

OSys-XER differsfrom (BASIC-)XER in the following ways:

89

Generated XML Methods

OSys-XER usesan X SD list (aspace-delimited list of strings) to represent aSEQUENCE OF X, where X isany of the
following types: BOOLEAN, BIT STRING without named bits, ENUMERATED, GeneralizedTime, INTEGER,
OBJECT IDENTIFIER, OCTET STRING, REAL, RELATIVE-OID, or UTCTime. Similarly, aBIT STRING with
named bitsis encoded as an XSD list (consisting of the named bit identifiers).

For example, the ASN.1 specification “A ::= SEQUENCE OF INTEGER” with value “{ 12 3}" would produce
the following encoding in XER:

<A><INTEGER>1</INTEGER><INTEGER>2</INTEGER><INTEGER>3</INTEGER>
in XML, it would be the following:
<A>12 3

The OSys-XER encoding for a SEQUENCE OF CHOICE wraps each repetition in an element. In XER, each oc-
currence of the CHOICE isan XML element and it is not further wrapped.

For example, given My Type ::= SEQUENCE OF CHO CE { a A b B }, XER might produce a sequence
of <a> and elements, while OSys-XER will produce a series of <CHOICE> elements, or, if the CHOICE type
were named My Choi ce, aseries of <MyChoice> elements.

The values of the BOOLEAN data type are expressed as the lower case words “true” or “false” with no delimiters.
In XER, the values are <true/> and <false/>.

Enumerated token values are expressed as the identifiers themselves instead of as empty XML elements (i.e. ele-
mentswrapped in ‘< />"). For example, avalue of the ASN.1 type“Colors::= ENUMERATED { red, blue, green}”
equal to “red” would simply be “<color>red</color>" instead of “<color><red/></color>".

The special REAL values<NOT-A-NUMBER/>, <PLUS-INFINITY/>and <MINUS-INFINITY /> are represented
as NaN, INF and -INF, respectively.

GeneralizedTime and UTCTime values are transformed into the X SD representation for dateTime (YYYY-MMD-
DTHH: MM:SS[.SSSS][(Z|(+]-)HH:MM)]) when encoded to XML. When an XML document is decoded, the time
format is transformed into the ASN.1 format.

When encoding/decoding a type as the root element of an XML document, OSys-XER will typically give the root

element name alowercase first letter. By contrast, XER uses the NonParameterizedTypeName, which will have an
uppercase first letter, for the root element.

EXTENDED-XER

EXTENDED-XER (specified in X.693) allows you to vary the XML encoding of ASN.1 by using XER encoding
instructions. ASN1C supports EXTENDED-XER in two different ways: by compiling XSD and by compiling ASN.1

with XER encoding instructions. Support for XER encoding instructionsin ASN.1 islimited.

This section relates to our support for XER encoding instructions. If some features you need are not supported, you
might consider using direct compilation of XSD.

How to Generate Code for EXTENDED-XER

If your ASN.1 contains XER encoding instructions, ASN1C will automatically generate code for EXTENDED-XER
instead of BASIC-XER. This is true whether you use - xer or - xm on the command line. If, however, any unsup-
ported encoding instructions are found, ASN1C will ignore all XER encoding instructions, since it would not be ca-
pable of supporting EXTENDED-XER for that specification.

90

Generated XML Methods

Supported Instructions and Brief Summary

ASNI1C supports these instructions. ATTRI BUTE and BASE64. Very brief summaries of the effects of these instruc-
tionsfollow.

» ATTRI BUTE: Thisinstruction causes a component of a sequence to be encoded as an XML attribute.

» BASEG64: Thisinstruction causes octet strings to be encoded in a base64 representation, rather than a hexadecimal
one.

Limitations

The following are limitations related to EXTENDED-XER:

» For BASE64: ASN1C only supports BASE64 on octet strings. Using BASE64 with octet stings having contents
constraints, open types, or restricted character strings is not supported.

» For encoder's options: ASN1C decoders do not support the following encoder's options alowed by EXTEND-
ED-XER:

 encoding named bits as empty elements
« encoding named numbers as empty elements

» Enforcement of Encoding Instruction Restrictions: ASN1C does not check that you are using encoding instructions
properly. Misapplication of encoding instructions has undefined results. For example, X.693 does not generally
allow ATTRI BUTE to be applied to a sequence type (there are a few cases where it can be); such an application
produces malformed XML.

In particular, when applying ATTRI BUTE to a restricted character string type, the type should be restricted to
excludethe control characterslisted in X.680 15.15.5, since these control characters are encoded as empty elements.
(Another solution would be to use ATTRI BUTE and BASE64 together, except that ASN1C does not currently
support BASE64 for restricted character strings.) ASN1C will not enforce this rule, but you will get malformed
XML if you try to encode a string having control characters as an attribute.

» XSD Generation: The- xsd switch doesnot currently generate X SD that can be used to validate EXTENDED-XER
encodings. (Actualy, in the worst cases, it is hot possible to produce X SD that validates precisely the set of valid
EXTENDED-XER encodings; the closest approximations would either fail to reject someinvalid encodings or fail
to accept some valid encodings. Thisis aresult of the encoder's options, which can produce mixed content models
and XML Schema's limited ahilities to constrain mixed content models.)

Working with generated EXTENDED-XER code

As noted above, when generating code for EXTENDED-XER, you will be working with the "XML" runtime, as
oppposed to the "XER" runtime. This makes coding for EXTENDED-XER dlightly different from coding for XER:

* You will use Asn1XmlEncoder instead of Asn1XerEncoder

* You will supply the name of the element when encoding a value. Typically, this will be the name of the ASN.1
PDU type.

Finally, thereis a sample reader and writer programincshar p/ sanpl e_xer / Enpl oyeeEXER, should you need
to see an example.

91

Generated XML Methods

Generated Encode Methods

The generation of methods to encode data in XML is similar to how methods were generated in the BER/DER and
PER cases discussed previously. For each ASN.1 production defined in the ASN.1 source file, a C# encode method
may be generated. This function will convert a populated variable of the given type into an encoded ASN.1 message.

Anencodemethodisonly generated if it isrequired to alter the encoding of the base class method. The C# model isbuilt
on inheritance from a set of common run-time base classes. These run-time classes contain default implementations
of encode/decode methods that handle the encoding/decoding of the basic types.

For simple assignments, the generation of an encode method is not necessary. For example, the following production
will not result in the generation of an encode method:

X ::= | NTEGER

In this case, the generated C# class extends the Asnlinteger base class and the default encode method within this class
is sufficient to encode a value of the generated type.

A custom encode method is only generated if:
1. The ASN.1 typeis constructed (SEQUENCE, SET, SEQUENCE OF, SET OF, or CHOICE).
2. The ASN.1 type contains a testable constraint (for example, INTEGER (1..100))

3. The ASN.1typeisenumerated. Thisincludesan INTEGER type with named numbers, aBIT STRING with named
bit constants, or the ENUMERATED built-in type.

Note

Two variations are discussed here: "XER" and "XML". The "XML" variant applies to EXTENDED-XER.
See the Overview section above for more information.

Generated C# Method Format and Calling Parameters

The signature for a C# XER encode method is as follows:

public override void Encode (AsnlXerEncoder buffer, string el emNane)
The signature for a C# XML encode method is similar:

public override void Encode (AsnlXm Encoder buffer, string el emNane)

The buffer argument is a reference to an AsnlXerEncoder or Asn1XmlEncoder derived abject that describes the
buffer or output stream into which a message is to be encoded. AsnlXerEncoder is a base interface for the
Asn1XerEncodeBuffer and Asn1XerOutputStream classes. Similarly, Asn1XmlEncoder is an interface to a pure XML
version of these base classes. There is no difference which encode method is used: output stream or message buffer.
The generated logic is the same, the difference is only in the first parameter of the encode method. This must be cre-
ated and initialized before calling any encode method. See the description of this class in the C# Run-Time Reference
Manual for details on how thisclassis used.

The elemName argument is a reference to a string containing the element name text. This text is used to form the
standard XML angle-bracketed wrapper that is applied to each element in a message. Note the name passed must not
contain the angle-brackets (i.e. the < > characters). These will be added by the encode method.

The elemName can be passed in different waysto control how the name is applied. The normal way isto pass a hame
that is applied as the element name of the element. If null is passed, then the default element name for the referenced

92

Generated XML Methods

ASN.1 built-in typeis used. For example, <BOOLEAN> isthe default element name for the ASN.1 BOOLEAN type.
The complete list of default element names can be found in the X.693 standard. If an empty string is passed (i.e. "),
this tells the encode method to omit the element name string all together and just encode the value (thisis similar to
implicit tagging in the BER case).

The XER or XML encode methods do not return avalue. Thisisdifferent than the C/C++ version that returns anegative
status value to indicate an encoding failure. For C#, errors are reported via the exception mechanism. All ASN1C
C# exceptions are derived from the AsnlException base class. See the section on exceptions for a complete list and
description of the various exceptions that can be thrown. If I/O error occurs then the System.Exception is thrown.

Procedure for Calling C# XER Encode Methods

The C# class variables corresponding to each of the ASN.1 types and method of population are the same as they were
in the BER encoding case. See the section Populating Generated Variables for Encoding for instructions on how to
populate the variables prior to encoding.

Once an object's member variables have been populated, the object's encode method can be invoked to encode the
value. The general procedure to do thisinvolves the following three steps:

1. Create an encode message buffer or output stream object into which the value will be encoded

2. Invoke encode methods. These include the EncodeStartDocument and EncodeEndDocument methods from the
Asn1XerEncodeBuffer class and the encode method from the ASN1C generated class.

3. If the encode message buffer is used: invoke encode message buffer methods to access the encoded message com-
ponent. If the output stream is used: close the stream.

The first step is the creation of an encode message buffer object. For XER encoding, this is an object of the
Asn1XerEncodeBuffer class. The following constructors are available for creating an XER encode buffer object:

public AsnlXer EncodeBuffer ();

public AsnlXer EncodeBuffer (bool canonical, int sizelncrenent);

The default constructor sets al internal buffer control variables to default values. Canonical XER is set to false and
size increment is set to 1024. The other forms of the constructor allow these variables to be changed. Canonical XER
specifies that the canonical form of XER encoding (CXER as specified in X.693) should be used. Size increment
specifies the amount by which the dynamic encode buffer should be expanded when it fills up. This should be set
lower for small, memory-constrained environments and higher if large messages are being encoded.

If the output stream method is used then the first step is the creation of an output stream. For XER encoding, thisis
an object of the Asn1XerOutputStream class. The following constructors are available for creating an XER encode
buffer object:

publ i c AsnlXer Qut put Stream (Qut put St ream os);
publ i c AsnlXer Cut put St ream (Qut put Stream os, bool canonical, int bufSize);

The first constructor creates a buffered XER output stream with default size of an internal buffer. Canonical XER is
set to false. The other form of the constructor allows these variables to be changed. Canonical XER specifies that the
canonical form of XER encoding (CXER as specified in X.693) should be used. The buffer size argument specifies
the size of the internal buffer of the stream. Larger buffer sizes typically provide better performance at the expense
of increased memory consumption.

Similar classes exist for XML encode buffer and streams:

93

Generated XML Methods

public AsnlXm EncodeBuffer ()

public AsnlXm EncodeBuffer (int sizelncrenent)

public AsnlXm Cut put St ream (Qut put St ream 0s)

public AsnlXm Cut put Stream (Qut put Stream os, int bufSize)

The main differenceisthe XML classes to not have acanonical XML option; therefore, thereis not cxer or canonical
boolean argument.

The second step is the invocation of the encode methods. The calling arguments were described earlier. As per the
C# standard, this method must be invoked from within a try/catch block to catch the possible AsnlException or
System.Exception that may be thrown. Alternatively, the method from which the encode method is called can declare
that it throws Asn1Exception and System.Exception leaving it to be dealt with at a higher level.

Finally, if a message buffer is used, encode buffer methods can be called to access the encoded message component.
The C# API provides an object called a ByteArraylnputStream that provides away to look at the encoded component
as a stream. The encode buffer object provides a method called GetlnputStream that returns a byte array input stream
representing the message component. Thisis the preferred way to access the encoded component.

In addition to GetlnputSream, there is a MsgCopy property that will retrieve a copy of the generated message into a
byte array object. This is somewhat slower because a copy needs to be done. Another option that is available when
doing XER encoding isthe Buffer property. Thisreturnsareferenceto the actual message buffer into which the message
was encoded. Since an XER message is encoded front-to-back (unlike the back-to-front used in BER/DER encoding),
the buffer reference returned will point to the start of the encoded message. The MsgLength property can then be used
to get the message length (in bytes). Note that the byte count may not correspond to the actual character count as
UTF-8 encoding is used and some characters may be multiple bytesin length.

If an output stream is used, the stream should be closed when encoding is complete to ensure all buffered data is
flushed to the output device.

The Asn1XerEncodeBuffer encode buffer class also contains other methods for operating directly on the encoded
component (for example, the write method can be used to write it to a file or other medium). A user could also
derive their own special encode buffer class from this class to add more functionality. See the description of the
Asn1XerEncodeBuffer classin the run-time section for a full description of the available methods.

A complete example showing how to invoke an XER encode method is as follows:

/1 Note: personnel Record object was previously popul ated with data

/1l Step 1: Create a nessage buffer object. This object uses
/1l standard XER (non-canonical) and the default size increnent
/1 for buffer expansion..

AsnlXer EncodeBuf f er encodeBuffer = new AsnlXer EncodeBuffer();

/1l Step 2: Invoke the encode nethods. These incl ude

/1 encodeStart Docunent to encode the XM. docunent header,

/1 the generated C# encode nethod to encode the docunment body,
/1 and the encodeEndDocunent nethod to conplete the nessage.
/1 Note that these methods nust be invoked fromwthin a

/1 trylcatch bl ock. .

try {
encodeBuf f er. EncodeSt art Docunent () ;

per sonnel Recor d. Encode (encodeBuffer, null);

94

Generated XML Methods

}

encodeBuf f er . EncodeEndDocurnent () ;

if (trace) {
System Consol e. Qut . Wi teLine ("Encodi ng was successful ");
encodeBuffer. Wite (System Consol e. OpenSt andar dQut put ()) ;

}

/1 Step 3: Access the encoded message conmponent. In this
/] case, we use nethods in the class to wite the encoded
/1l XML docunent to a file..

encodeBuffer. Wite(new System | O Fil eStream(fil enamne,
System |1 O Fi | eMbde. Create));

/1 W can also directly access the buffer as foll ows:

byte[] buffer = encodeBuffer.Buffer;
int meglen = encodeBuffer. MsgByteCnt;

catch (Exception e) {

}

System Consol e. Qut . WiteLine (e. Message);
AsnlUtil . WiteStackTrace(e, Console.Error);
return;

An example showing stream-based encoding is as follows:

/1 Not

e: personnel Record object was previously popul ated with data

AsnlXer Qut put Steram outs = nul | ;

try {
/1

/1
/1

out
/1
/1
/1
/1
/1
/1
out
per

out

i f

Step 1: Create an output stream object. This object
uses standard XER (non-canonical) and the default
internal buffer’s size.

s = new AsnlXer Qut put St ream(new System | O Fil eStrean(
filenane, System 1O FileMde.Create));

Step 2: Invoke the encode met hods. These i ncl ude

encodeSt art Docunent to encode the XML docunent header,

t he generated C# encode nethod to encode the document body,
and the encodeEndDocument mnet hod to conpl ete the nessage.
Note that these nethods nust be invoked fromw thin a
try/catch bl ock..

s. EncodeSt art Docunent () ;

sonnel Record. Encode (outs, null);

s. EncodeEndDocunent ();

(trace) {

95

Generated XML Methods

System Consol e. Qut . Wi teLine ("Encodi ng was successful ");
encodeBuffer. Wite (System Consol e. OpenSt andar dQut put ()) ;
}
}
catch (Exception e) {

System Consol e. Qut . WiteLine (e. Message);
AsnlUtil . WiteStackTrace(e, Console.Error);

return;
}
finally {
/1l Step 3: Close the stream
try {
if (outs !'= null)
outs. d ose ();
}
catch (Exception e) {}
}

If you compare these examples with the other encoding examples, you will seethe procedures are similar. This makes
it very easy to switch encoding methods should the need arise.

In the case of XML encode, the procedure is very similar. The only difference is that it is not necessary to call the
EncodeStartDocument and EncodeEndDocument methods. The are built into the generated encode method for PDU
data types.

The resulting XML document from running the program above is as follows:

<?xm version="1. 0" encodi ng="UTF-8"?>
<Per sonnel Recor d>
<name>
<gi venName>John</ gi venNanme>
<initial>P</initial>
<fam | yNane>Smi t h</ f am | yNane>
</ nane>
<nunber >51</ nunber >
<title>Director</title>
<dateOf H re>19710917</ dat eCf Hi re>
<name Spouse>
<gi venName>Mar y</ gi venNanme>
<initial>T</initial>
<fam | yNane>Smi t h</ f am | yNane>
</ naneF Spouse>
<chi | dren>
<Chi | dI nf or mati on>
<name>
<gi venName>Ral ph</ gi venNane>
<initial>T</initial>
<fam | yNane>Smi t h</ f am | yNane>
</ nane>
<dateO Birt h>19571111</ dat eOf Bi rt h>
</ Chi | dI nf or mati on>
<Chi | dI nf or mati on>
<name>
<gi venName>Susan</ gi venNane>

96

Generated XML Methods

<initial>B</initial>
<fam | yNane>Jones</f am | yNane>
</ nane>
<dat e Bi rt h>19590717</dateOf Bi rt h>
</ Chi | dl nf or mat i on>
</ chil dren>
</ Per sonnel Recor d>

Generated Decode Methods

ASNI1C decoders now default to using the C# Syst em Xl . Xl Reader classto parse the XML. Thisclassisa
standard part of the .NET framework. For the time being, you can generate code using the old SAX-based parsers by
specifying - sax on the ASN1C command line.

Generated Decode Methods when Using the Default
Parser (XmIReader)

Generated classes will have two methods for decoding:

public void DecodeDocunent (System Xm . Xnl Reader reader)

public void Decode(System Xm . Xml Reader reader, bool asG oup)

The DecodeDocunent method should be used when the parser is positioned at the start of an XML document,
making it necessary to move to the root element before reaching the data to be decoded. This is the method you will
most likely use.

The Decode method should be used when the parser is already positioned on the element to be decoded. If the current
element contains the content to be decoded, invoke Decode with asG oup = fal se. If, however, the current
element isitself part of the content to be decoded (and, in some cases, its siblings also), then invoke Decode with
asG oup = true.Mostlikely, youwill passf al se.

To illustrate, suppose that we have a SEQUENCE type that defines el enil and el en?. If we have an XML snippet
to decode, <r oot ><el eml/ ><el en®/ ></ r oot >, and we are positioned on the r oot element, we would use
asG oup = fal se, becauser oot contains the content to be decoded and is not a part of it. If, however, we were
positioned on the el eml element, we would use gr oup = true, because el eml is a part of the content to be
decoded; it is the beginning of the content itself.

The general procedure for decoding is as follows:

1. Createan XM_Reader on the input streamto be decoded.
2. Instantiate an instance of the generated class you want to decode.

3. Invoke the DecodeDocunent method on the generated class.

4. Access the decoded data through the public members of the generated class.

A program fragment that could be used to decode an employee record is as follows:

97

Generated XML Methods

public class Reader

{
public static void Min(System String[] args)
{
System String fil enane = "nmessage. xm";
bool trace = true;
try
{
/1l Create an XM reader object
FileStreamfs = new FileStream(fil ename, Fil eMde. Qpen,
Fi | eAccess. Read, Fil eShare. Read);
Xm Reader reader = Xm Reader. Create(fs);
/! Read and decode the nessage
Per sonnel Record personnel Record = new Personnel Record();
per sonnel Recor d. DecodeDocunent (r eader) ;
if (trace)
{
System Consol e. Qut . Wi teLi ne("Decode was successful ");
per sonnel Record. Print (" personnel Record");
}
}
catch (System Exception e)
{
System Consol e. Qut . Wit eLi ne(e. Message) ;
AsnlUtil.WiteStackTrace(e, Console.Error);
return ;
}
}
}

Generated Decode Methods when Using the SAX parser

As noted above, - sax can be used to generate SAX-based parsing code. This section discusses the code that is gen-
erated in that case.

AsaSAX parser parses XML, it invokes callbacks on a content handler interface to notify any interested parties of the
datait has parsed. ASN1C generates an implementation of the content handler interface as an inner class of each class
generated for an ASN.1 production. This content handler populates the fields of the data class as the XML is parsed.
The generated content handler includes the following methods:

St art El enent

Char acters

EndEl enent

The procedure to invoke the generated decode method is as follows:

1. Instantiate an XmlSaxParser object.

98

Generated XML Methods

2. Instantiate a generated C# <ProdName> object to hold the decoded message data.

3. Invoke the <ProdName> object decode method passing the reader created in step 1 and the URI of the XML docu-
ment to be parsed. This method initiates and invokes the XML parser’s parse method to parse the document. This,
in turn, invokes the generated SAX handler methods.

4. Methods within the <ProdName> object can now be used to access the decoded data. The member variables that
were declared to be public can be accessed directly.

5. Error handling is accomplished using atry-catch block to catch SAX exceptions.

A program fragment that could be used to decode an employee record is as follows:

public class Reader {
public static void main (string args[]) {
string filenane = "enpl oyee. xm ";

try {
/1 Create an XM. reader object

Xm SaxParser reader = Xnl SaxParser. New nst ance();
/1 Read and decode the nessage

Per sonnel Record personnel Record = new Personnel Record ();
per sonnel Recor d. Decode (reader, filenane);
if (trace) {
System Consol e. Qut. WiteLine ("Decode was successful");
personnel Record. Print ("personnel Record");
}

}
catch (Exception e) {

System Consol e. Qut. WiteLine (e. Message);
AsnlUtil.WiteStackTrace(e, Console.Error);
return;

99

Chapter 11. Generated OER Encode
Methods

The generation of methods to encode data in accordance with the Octet Encoding Rules (OER) is similar to how
methods were generated in the BER/DER case discussed previously. For each ASN.1 production defined inthe ASN.1
source file, a C# encode method may be generated. This function will convert a populated variable of the given type
into an encoded ASN.1 message.

Anencode method isonly generated if it isrequired to alter the encoding of the base class method. The C# model isbuilt
on inheritance from a set of common run-time base classes. These run-time classes contain default implementations
of encode/decode methods that handle the encoding/decoding of the basic types.

For simple assignments, the generation of an encode method is not necessary. For example, the following production
will not result in the generation of an encode method:

X 1= I NTEGER

In this case, the generated C# class extends the Asnlinteger base class and the default encode method within this class
is sufficient to encode a value of the generated type.

An encode method is typically only generated when atestable constraint is present.

For example, the following declaration will cause a custom encode method to be generated because the value range
constraint is OER-visible and alters the encoding:

X ::= I NTEGER (1..255)
In this case, specia logic is hecessary to apply the value range constraint.

Constructed types (SEQUENCE, SET, SEQUENCE/SET OF, and CHOICE) will always have a generated encode
method.

Generated C# Method Format and Calling Para-
meters

The signature for a C# OER encode method is as follows:
public override void Encode (AsnlCer EncodeBuffer buffer)

The buffer argument is areference of an Asn1Oer EncodeBuffer object that describes the buffer into which a message
is to be encoded. This must be created and initialized before calling any encode method. See the description of this
classin the C# Run-Time Classes section for details on how this classis used.

The OER encode methods do not return a value. Errors are reported via the exception mechanism. All ASN1C C#
exceptions are derived from the Asn1Exception base class. See the section on exceptions for a complete list and de-
scription of the various exceptions that can be thrown.

Procedure for Calling C# OER Encode Methods

The C# class variables corresponding to each of the ASN.1 types and method of population are the same as they were
in the BER encoding case. See the section on BER encoding for instructions on how to populate the variables prior
to encoding.

100

Generated OER Encode Methods

Once an object's member variables have been populated, the object's encode method can be invoked to encode the
value. The general procedure to do this involves the following three steps:

1. Create an encode message buffer object into which the value will be encoded
2. Invoke the encode method
3. Invoke encode message buffer methods to access the encoded message component

The first step is the creation of an encode message buffer object. For OER encoding, this is an object of the
Asn1OerEncodeBuffer class. The following constructors are available for creating an OER encode buffer object:

public AsnlQer EncodeBuffer ();

public AsnlQer EncodeBuffer (int size);

The second form of the constructor includes a size argument for the initial size of the buffer. The default constructor
sets the value to areasonable mid-range value (see INITIAL_SIZE in Asn1EncodeBuffer, as of thiswriting the value
was set to 1024).

The second step is the invocation of the encode method, described earlier.

Finally, encode buffer methods can be called to access the encoded message component. The C# APl provides an
object called a ByteArrayl nputStream that provides away to look at the encoded component as a stream. The encode
buffer object provides amethod called GetlnputStreamthat returns a byte array input stream representing the message
component. Thisis the preferred way to access the encoded component.

In addition to GetlnputSream there is a MsgCopy property that will retrieve a copy of the generated message into a
byte array object. This is somewhat slower because a copy needs to be done. Another option is the Buffer property.
Thisreturns a reference to the actual message buffer into which the message was encoded. The MsgByteCnt property
can then be used to get the message length in bytes or the MsgBitCnt property can be called to get the length in bits.

The encode buffer class aso contains other methods for operating directly on the encoded component (for example,
the Write method can be used to writeit to afile or other medium). And of course, one could derive their own special
encode buffer class from this class to add more functionality. See the description of the Asn1O0er EncodeBuffer class
in the runtime section for afull description of the available methods.

A complete example showing how to invoke an OER encode method is as follows:

/1 Note: personnel Record object was previously popul ated with data

/1l Step 1: Create a nessage buffer object. This object uses the
/] default size.

Asnl1lCer EncodeBuf f er encodeBuffer = new AsnlQer EncodeBuffer();

/1l Step 2: Invoke the encode nethod. Note that it nust be done
/1 fromwithin a try/catch bl ock..

try {
per sonnel Recor d. Encode (encodeBuffer);

if (trace) {
System Consol e. Qut . WiteLine ("Encodi ng was successful ");
System Consol e. Qut . WiteLine ("Hex dunp of encoded record:");
encodeBuf f er. HexDunmp () ;

101

Generated OER Encode Methods

}

/1 Step 3: Access the encoded message conmponent. In this

/1 case, we use nethods in the class to wite the conponent
// to a file and output a formatted dunp to the message. dnp
/Il file..

/[l Wite the encoded record to a file
encodeBuffer. Wite(new System | O Fi | eSt r ean(
filenane, System 1O FileMde.Create));

/!l Generate a dunp file for comparisons
System 1 O StreaniWiter messagednmp =
new System 1O StreamWiter(new System | O Fil eStrean(
"message. dmp”, System | O Fil eMbde. Create));
messagednp. Aut oFl ush = true;
encodeBuf f er . HexDunp(messagednp) ;

/1 W can also directly access the buffer as foll ows:

byte[] buffer = encodeBuffer.Buffer;
int meglen = encodeBuffer. MsgByteCnt;

}

catch (Exception e) {
System Consol e. Qut . WiteLine (e. Message);
AsnlUtil . WiteStackTrace(e, Console.Error);
return;

}

If you compare this example with the BER encoding example in Figure 2, you will see the encoding procedure is
almost identical. This makes it very easy to switch encoding methods should the need arise. All you need to do is
change the buffer class and dlightly alter the invocation of the encode method.

Canonical OER

If youwant to produce a Canonical-OER encoding, you can chooseto do so either at code generation time by specifying
the -coer switch or at runtime by invoking Set Canoni cal Mode(t r ue) onthe encode buffer.

Reuse of C# Encoding Objects

The concept of reusing C# objects for OER encoding is the same as was described previously for BER encoding.
Basically, all that needs to be done is the creation of a single OER encode buffer object and an object corresponding
to the ASN.1 data type to be encoded outside of the processing loop. These objects can then be reused to encode
each instance of the messages to be sent. After each message is encoded, the OER buffer must be reset for the next
message by using the reset method. See the section on reuse of objectsin the BER encoding section for amorethorough
discussion and sample code on using this capability.

102

Chapter 12. Generated OER Decode
Methods

For each ASN.1 production defined in the ASN.1 source file, a C# decode method may be generated. This method will
decode an ASN.1 message into public member variables within the C# object.

As was the case for encode methods, a decode method is only generated if it is required to alter the default method in
thebase class. The C# model isbuilt oninheritance from a set of common run-time base classes. These run-time classes
contain default implementations of encode/decode methods that handle the encoding/decoding of the basic types.

For primitive types, a custom OER decode method is only generated if one or more of the following is true:
1. Thetype contains a OER-visible constraint
2. The generation of event handlers was specified

The exception to thisrule is the ENUMERATED primitive type (or likewise, INTEGER type with a named number
list) that will always cause a decode method to be generated.

Constructed types will always cause custom OER decode methods to be generated.

Generated C# Method Format and Calling Para-
meters

The signature for a C# OER decode method is as follows:

public override void Decode (AsnlCerDecodeBuffer buffer)

Thebuffer argument isareference of an Asn1Oer DecodeBuffer object that describesthe messagethat isbeing decoded.
Thismust be created and initialized before calling any decode method. See the description of this classin the C# Run-
Time Classes section for details on how this classis used.

The decode method returns no result. Failure is handled by the exception mechanism. All ASN1C C# exceptions are
derived from the Asnl1Exception base class. See the section on exceptions for a complete list and description of the
various ASN.1 exceptions that can be thrown.

Procedure for Calling C# OER Decode Methods

The general procedure to decode an ASN.1 OER message involves the following three steps:
1. Create a decode message buffer object to describe the message to be decoded

2. Invoke the decode method

3. Process the decoded data values

Thefirst step isthe creation of adecode message buffer object. The Asn1Oer DecodeBuffer object contains constructors
that can either accept a message as a byte array or as an 1/O input stream. The input stream option makes it possible
to decode messages directly from other mediums other than amemory buffer (for example, amessage can be decoded
directly from afile or a socket).

103

Generated OER Decode Methods

Unlike some other encoding rules, OER encodings do not indicate the ASN.1 type that was encoded. The ASN.1 type
must be known prior to decoding in order to successfully decodeit. A common approach in specificationsisto have a
specific outer level type known as a"Protocol Data Unit" (PDU) that encompasses all of the different message types
that might bereceived. Thisistypically aCHOICE construct with each option representing adifferent type of message.

Whatever the message type is, the generated decode method for that message is invoked to decode the message. The
calling arguments were described earlier.

Thefinal step isto process the data. All datais contained within public member variables so accessis quite easy. All
of the primitive datatype classes contain a public member variable called mValue that contains decoded data. Thiscan
be accessed in nested structures by prefixing mValue with each of the element names from the top down. For example,
the given name element in the Name type shown earlier would be accessed as follows: name.givenName.mValue (this
assumes an instance of the Name class was created using the variable name name).

A complete example showing how to invoke a decode method is as follows:
try {

/1l Step 1. create a decode nessage buffer object to describe the
/1 nessage to be decoded. This exanple will use a file input
/1 streamto decode a nmessage directly froma binary file..

/1 Create an input file stream object

System IO FileStreamins = new System | O Fil eSt rean
filenane, System | O Fil eMbde. Open, System | O Fil eAccess. Read) ;

/1l Create a decode buffer object
AsnlCer DecodeBuf f er decodeBuffer = new AsnlCer DecodeBuffer (ins);

/1l Step 2: create an object of the generated type and i nvoke the
/] decode nmethod. .

Per sonnel Record personnel Record = new Personnel Record ();
per sonnel Recor d. Decode (decodeBuffer);

/1l Step 3: process the data

if (trace) {
System Consol e. Qut . WitelLine ("Decode was successful");
per sonnel Record. Print ("personnel Record");
}
}
catch (Exception e) {
System Consol e. Qut. WitelLi ne (e. Message);
AsnlUtil.WiteStackTrace(e, Console.Error);
return,

}
Canonical OER

Many of therulesfor Canonical-OER can be enforced during decoding, such that exceptions are thrown if the decoder
detects that the encoding was not canonical. By default, this behavior is disabled. You can enable this behavior by
either generating the code with the -coer switch or by invoking Set Canoni cal Mode(t r ue) onthedecode buffer.

104

Generated OER Decode Methods

Reuse of C# Decoding Objects

C# objects can be reused for decoding OER messages in the same way they were for BER messages. The decode
buffer and message type objects are created outside of the main decoding loop. Then in the main loop these objects are
reused to process each input message. Data must be saved from the message type object after each iteration because
the contents of the object will be overwritten on each consecutive loop iteration. Nothing special needs to be done at
the bottom of theloop to ready the decoder for the next message. All necessary initialization will be handled internally.

105

Chapter 13. Generated JSON Methods

Overview

This chapter discusses the code generated for encoding and decoding JSON data.

Asof version 7.3, ASN1C supports ITU-T X.697 JER.

Note

BACKWARD COMPATIBILITY: Prior to 7.3 (and starting with asnlc 6.6), asnlc used proprietary en-
coding rules for JSON, as this work predated the development of ITU-T X.697. If you need to work with
our proprietary encoding rules, you must use the command-line arguments -compat 729 (or an older version
number). We urge you to upgrade to using X.697 JER.

Our proprietary rules, and differences with X.697, are available on our website [http://www.obj-sys.com/
docs/JISONEncodingRul es.pdf].

Generated JSON Encode Methods

Encoding to JSON is similar to other encoding rules. For each ASN.1 production defined in an ASN.1 sourcefile, an
encode method may be generated. This function will convert a populated variable of the given type into an encoded
ASN.1 message.

An encode method is only generated if it is required to alter the behavior of the base class. The C# model is built on
inheritance from a set of common run-time base classes. These run-time classes contain default implementations of
encode/decode methods that handl e the encoding/decoding of the basic types. The generated classesfor all constructed
types (SEQUENCE, SEQUENCE OF, and CHOICE) will include generated encode methods.

Generated Method Format and Calling Parameters

The signature for the JISON encode method is shown below:

public voi d Encode(AsnlJsonCut put Stream buffer)

The buffer argument is an Asn1JsonOutputStream object which receives the encoded message. This must be created
and initialized before calling any encode method. See the description of this classin the C# Run-Time Classes section
for detailson how thisclassisused. Since JSON isacharacter-based encoding, Asn1JsonOutputStream are constructed
on System.|O.TextWriter instances. There is a subclass, Asnl1JsonOutputBuffer, that can be used to output to a byte

array.

Asyou can see, the encode methods return void; an exception is thrown if an error occurs. All ASN1C C# exceptions
are derived from AsnlException. See the section on exceptions for a complete list and description of the various
exceptions that can be thrown.

Populating Generated Variables for Encoding

Populating generated types for encoding can be done in most cases either through the constructors or by assigning
object references to public member variables.

106

http://www.obj-sys.com/docs/JSONEncodingRules.pdf
http://www.obj-sys.com/docs/JSONEncodingRules.pdf
http://www.obj-sys.com/docs/JSONEncodingRules.pdf

Generated JISON Methods

Constructors are provided for most generated types to allow direct population of the encapsul ated member variable(s)
oninitialization. The exception to thisisfor classes generated for SEQUENCE OF types. In that case, the constructors
only allow the size of an array to be specified — population of the array elements must be done manually.

All of the base run-time classes except Asn1Null contain public member variables. In practically all casesthereisa
single variable called mValue that is of the base type that needs to be populated. For example, the Asnlinteger base
class contains the following item:

public | ong nVal ue;

So, for the following assignment:
X ::= I NTEGER(Q. . 255)

you may populate avariable of this type either using the constructor:
X x = new X (25);

or viadirect access of the member variable:

X x = new X ();
X. nVal ue = 25;

The only primitive type that does not have a single member called mValue to represent itsvalueis BIT STRING. The
Asnl1BitSring class also contains a second variable called numbits to specify the number of bitsin the string.

Procedure for Calling JSON Encode Methods

Once an object's member variables have been populated, the object's encode method can be invoked to encode the
value. The general procedure to do thisinvolves the following three steps:

1. Create an encode output stream into which the value will be encoded.
2. Invoke the encode method.
3. Close the output stream.

Thefirst step isthe creation of an encode output stream, an Asn1JsonOutputSream. Thereisasingle constructor which
accepts a System.|O. TextWriter. Asusual, output can be directed to a string, astream, afile-backed stream, amemory
(array)-backed stream, etc. by making appropriate use of the .NET framework classes.

The second step is the invocation of the encode method. The calling arguments were described earlier.
Finally, close the output stream.
A complete example showing how to invoke an encode method is as follows:

/1 Note: personnel Record object was previously popul ated with data

AsnlJsonQut put St ream encodeStream = nul | ;

try {
/1l Step 1: Create an encode output stream wth UTF-8 character encoding

/1 Note the use of the UTF8Encodi ng constructor to avoid witing a UTF-8 BOMto the
encodeSt ream = new AsnlJsonQut put Stream (
new System 1O StreamWiter(new Systemio.FileStrean(fil enane, System | O Fil eMod
new System Text. UTF8Encodi ng(fal se,true)));

107

Generated JISON Methods

/1l Step 2: Invoke the encode nethod.
per sonnel Recor d. Encode (encodeStream;

if (trace) {
System Consol e. Qut . Wi teLi ne("Encodi ng was successful ");
}

}
catch (Exception e) {

System Consol e. Qut . Wit eLi ne(e. Message) ;
AsnlUtil.WiteStackTrace(e, Console.Error);
Envi ronnent . Exi t (1) ;

}
finally {
try {
if (encodeStream!= null) encodeStream Cl ose ();
}
catch (Exception e) {}
}

Reuse of C# Encoding Objects

The simple example above showed the procedure to encode a single record. But what if you had to encode a series
of the same type of record over and over again?

In such cases, you can avoid some object creation and garbage collection by reusing objects you have already created.
The generated classes and the ASN1C runtime classes can often be viewed as reusable containers into which you can
simply assign new data.

To show an example of object reuse, suppose we were going to encode a series of octet strings. The ASN.1 type for
our data might be:

Data ::= SEQUENCE ({
first OCTET STRI NG
second OCTET STRI NG,
third OCTET STRI NG

}

The generated C# class would contain public member variables for each of the octet strings:

public AsnlCctetString first;
public AsnlCctet String second;
public AsnlCctetString third;

The most efficient way to repopulate these variables within aloop would be simply to assign the data to be encoded
to the public mval ue field of the Asn1OctetString objects. Y ou do not need to create new Asn1OctetSring or Data
objects each time.

A code snippet showing how this could be done is as follows:

/1l Step 1: Create Data and AsnlJsonQut put Stream objects for use in
/1 the | oop..

Data data = new Data(null, null, null); // creates enpty octet string objects
AsnlJsonQut put St ream encodeStream = new AsnlJsonQut put Stream (yourWiter);

108

Generated JISON Methods

for (;;) {

/1 logic here to read nane conponents froma DB or other nedium

/1 popul ate octet strings (assune first, second, third are byte arrays
/'l popul ated by the above | ogic)

data.first.value = first;
dat a. second. val ue = second;
data.third.value = third;

/'l encode

try {
nane. Encode (encodeStream;

/1 perhaps wite sone non-ASN. 1 data to the strean?

}
catch (AsnlException e) {

/1 handl e error
}

}
Generated JSON Decode Methods

For each ASN.1 production defined in the ASN.1 source file, a decode method may be generated. This method will
decode an ASN.1 message into public member variables within the C# object.

As was the case for encode methods, a decode method is only generated if it is required to alter the behavior of the
base class. The C# model is built on inheritance from a set of common run-time base classes. These run-time classes
contain default implementations of encode/decode methods that handle the encoding/decoding of the basic types.

Generated Method Format and Calling Parameters

The signature for a JISON decode method is as follows:

public void Decode(AsnlJsonDecodeBuffer buffer)
The buffer argument is an AsnlJsonDecodeBuffer object which provides the message to be decoded. This must be
created and initialized before calling any decode method. See the description of this classin the C# Run-Time Classes
section for details on how this classis used.

Asyou can see, the decode method returns void; the datais decoded into the instance on which decode isinvoked and
an exception isthrown if an error occurs. All ASN1C exceptions are derived from AsnlException. See the section on
exceptions for a complete list and description of the various ASN1C exceptions that can be thrown.

Procedure for Calling C# JSON Decode Methods

The general procedure to decode an ASN.1 JSON message involves the following three steps:

109

Generated JISON Methods

1. Create a decode buffer on the message to be decoded
2. Invoke the decode method
3. Process the decoded data values

The first step is the creation of a decode buffer. An AsnlJsonDecodeBuffer can be constructed on either a
System.1O. TextReader or a System.1O.Stream. In the latter case, the character encoding is assumed to be UTF-8 if it
cannot be detected (as long as the Stream is seekable, the character encoding can be detected). Thus, messages can
easily be sourced from streams, files, or arrays.

The second step is to invoke the generated decode method. The calling arguments were described earlier.

Thefinal step isto apply your application-specific processing to the data. All datais contained within public member
variables so accessis quite easy.

A complete example showing how to invoke a decode method is as follows:

try {
/1 Step 1. create a decode buffer for the nessage to be decoded.
/1 This exanple will use a file input streamto decode a nessage

/1 in a binary file.

/1 Create an input file stream object
FileStreamins = new FileStream (filenane, System 1O Fil eMode. Open, System | O Fil eAc

/1l Create a decode buffer object
AsnlJsonDecodeBuf f er decodeBuffer = new AsnlJsonDecodeBuffer (ins);

/1l Step 2: create an object of the generated type and invoke the
/1 decode nmethod. .

Per sonnel Record personnel Record = new Personnel Record ();

per sonnel Recor d. Decode (decodeBuffer);

/1l Step 3: process the data

if (trace) {
System Consol e. Qut . WitelLi ne("Decode was successful");
per sonnel Record. Print ("value");

}

}
catch (Exception e) {

System Consol e. Qut . WitelLine(e. Message);
AsnlUtil.WiteStackTrace(e, Console.Error);
Envi ronnment . Exi t (1) ;

}
Reuse of C# Decoding Objects

The sample above showed the JSON decoding of a single message. In atypical application, aloop would be involved
to decode a series of messages.

A single decode buffer can be used to process a stream of messages (assuming all messages are using the same character
encoding). If the decode buffer is created using an input stream that contains a series of messages (for example, afile
containing multiple records, or a communications device), you can repeatedly invoke the JSON decode method on
the given message type.

110

Generated JISON Methods

Note that you can also use the same instance of your message type for repeated decoding, rather than creating a new
object and leaving the old one to be garbage collected. Nothing special needs to be done to do this. The generated
decode method will automatically call the internal Init() method before decoding to make sure all items are reset to
their starting state.

In the example above, all that would need to be done to decode a series of personnel recordsisthe inclusion of aloop
after the Personnel Record object was created in step 2:

for () {

per sonnel Recor d. Decode (decodeBuffer);

if (trace) {
System Consol e. Qut . WitelLine ("Decode was successful");
per sonnel Record. Print ("personnel Record");

111

Chapter 14. Generated MDER Encode
Methods

Unlike what is done for other encoding rules, for MDER we provide stream-based encoding only. In order to encode
to amemory buffer, you ssimply use a System.lO.MemoryStream.

For each ASN.1 production defined in an ASN.1 source file, an encode method may be generated. This function will
convert a populated variable of the given type into an encoded ASN.1 message.

An encode method is only generated if it is required to alter the behavior of the base class. The C# model is built on
inheritance from a set of common run-time base classes. MDER supports only afew primitive types, and most of these
are subsets of ASN.1 built-in types. Therefore, in most cases, there is not an applicable MDER encode method in the
common run-time base class and so an encode method will be generated.

The generated classesfor all constructed types (SEQUENCE, SEQUENCE OF, and CHOICE) will include generated
encode methods.

Generated Method Format and Calling Parame-
ters

The signature for the MDER encode method comes in two forms, shown below:

public virtual void Encode(AsnlMler Qut put Stream buffer, bool useCachedLength)

public virtual void Encode(AsnliMler Cut put Stream buffer)

The buffer argument is an Asn1Mder OutputStream object which receives the encoded message. This must be created
and initialized before calling any encode method. See the description of this classin the C# Run-Time Classes section
for details on how this classis used.

The useCachedLength argument indicates whether the encode method can rely on cached length information. In some
cases, MDER requires pre-calculation of the length of nested structures and this piece of information is needed twice
during encoding (once when encoding the containing structure and once when encoding the nested structure). The
generated types cache this information during encoding. User code should normally pass f al se for this argument.
The generated encoding methods will passt r ue to other encoding methods when appropriate.

Asyou can see, the encode methods return void; an exception isthrown if an error occurs. All ASN1C exceptions are
derived from Asn1Exception. Seethe section on exceptionsfor acompletelist and description of the various exceptions
that can be thrown.

Populating Generated Variables for Encoding

Populating generated types for encoding can be done in most cases either through the constructors or by assigning
object references to public member variables.

Constructors are provided for most generated typesto allow direct population of the encapsul ated member variable(s)
oninitialization. The exception to thisisfor classes generated for SEQUENCE OF types. In that case, the constructors
only alow the size of an array to be specified — population of the array elements must be done manually.

All of the base run-time classes except Asn1Null contain public member variables. In practically all casesthereisa
singlevariable called value that is of the base type that needs to be populated. For example, the Asnlinteger base class
contains the following item:

112

Generated MDER Encode Methods

public | ong nVal ue;

So, for the following assignment:
X 1= | NTEGER(O. . 255)

you may populate a variable of this type either using the constructor:
X x = new X (25);

or viadirect access of the member variable:

X x = new X ();
X. nmval ue = 25;

The only primitive type that does not have a single member called mValue to represent itsvalueis BIT STRING. The
Asnl1BitString class also contains a second variable called numbits to specify the number of bitsin the string.

Procedure for Calling MDER Encode Methods

Once an object's member variables have been populated, the object's encode method can be invoked to encode the

value. The general procedure to do this involves the following three steps:
1. Create an encode output stream into which the value will be encoded.
2. Invoke the encode method.

3. Close the output stream.

The first step is the creation of an encode output stream, an Asn1MderOutputStream. There is a single constructor
which accepts a System.lO.Stream. As usual, you may use a buffered output stream, file output stream, byte array

output stream, etc., or some combination thereof.

The second step is the invocation of the encode method. The calling arguments were described earlier.

Finally, close the output stream.

A complete example showing how to invoke an encode method is as follows:

/1 Note: personnel Record object was previously popul ated with data

AsnlMler Qut put St r eam encodeStream = nul | ;

try {
/1l Step 1: Create an encode output stream

encodeSt ream = new AsnlMler Qut put Stream (Fil e. OpenWite(fil enanme));

/1l Step 2: Invoke the encode nethod.

per sonnel Recor d. Encode (encodeStream /*useCachedLengt h=*/fal se);

if (trace) {

System Consol e. Qut . WitelLine ("Encodi ng was successful ");

}
}
catch (Exception e) {

113

Generated MDER Encode Methods

System Consol e. Qut . WiteLine (e. Message);
AsnlUtil.WiteStackTrace(e, Console.Error);

return;
}
finally {
try {
if (encodeStream!= null) encodeStream Cl ose ();
}
catch (Exception e) {}
}

Reuse of Encoding Objects

The simple example above showed the procedure to encode a single record. But what if you had to encode a series
of the same type of record over and over again?

In such cases, you can avoid some object creation and garbage collection by reusing objects you have already created.
The generated classes and the ASN1C runtime classes can often be viewed as reusable containers into which you can
simply assign new data.

To show an example of object reuse, suppose we were going to encode a series of octet strings. The ASN.1 type for
our data might be:

Dat a ::= SEQUENCE {
first OCTET STRI NG
second OCTET STRI NG
third OCTET STRI NG

}

The generated C# class would contain public member variables for each of the octet strings:

public AsnlCctetString first;
public AsnlCctetString second;
public AsnlCctetString third;

The most efficient way to repopulate these variables within aloop would be simply to assign the data to be encoded
to the public mval ue field of the Asn1OctetString objects. Y ou do not need to create new AsnlOctetSring or Data
objects each time.

A code snippet showing how this could be done is as follows:

/1l Step 1: Create Data and AsnlMler Qut put St ream objects for use in
/1 the | oop..

Data data = new Data(null, null, null); // creates enpty octet string objects
AsnlMler Qut put St r eam encodeSt r eam = new AsnlMdler Qut put Stream (out put St ream ;

for (;;) {

/1 logic here to read nane conponents froma DB or other nedium

/1 popul ate octet strings (assune first, second, third are byte arrays
/1l popul ated by the above | ogic)

114

Generated MDER Encode Methods

data.first.nValue = first;
dat a. second. mval ue = second;
data.third. nvValue = third;

/'l encode

try {
nane. Encode (encodeStream /*useCachedLengt h=*/fal se);

/1 perhaps wite sone non-ASN. 1 data to the streanf

}
catch (AsnlException e) {

/1 handl e error

}

115

Chapter 15. Generated MDER Decode
Methods

For each ASN.1 production defined in the ASN.1 source file, a decode method may be generated. This method will
decode an ASN.1 message into public member variables within the C# object.

As was the case for encode methods, a decode method is only generated if it is required to alter the behavior of the
base class. The C# model is built on inheritance from a set of common run-time base classes. MDER supports only
afew primitive types, and most of these are subsets of ASN.1 built-in types. Therefore, in most cases, there is not an
applicable MDER decode method in the common run-time base class and so a decode method will be generated.

Generated Method Format and Calling Parame-
ters

The signature for an MDER decode method is as follows:
public virtual void Decode(AsnliMler DecodeBuffer buffer)

The buffer argument is an Asn1Mder DecodeBuffer object which provides the message to be decoded. This must be
created and initialized before calling any decode method. See the description of this classin the C# Run-Time Classes
section for details on how this classis used.

Asyou can see, the decode method returns void; the datais decoded into the instance on which decode isinvoked and
an exception isthrown if an error occurs. All ASN1C exceptions are derived from Asn1Exception. See the section on
exceptions for a complete list and description of the various ASN1C exceptions that can be thrown.

Procedure for Calling MDER Decode Methods

The general procedure to decode an ASN.1 MDER message involves the following three steps:
1. Create a decode buffer on the message to be decoded

2. Invoke the decode method

3. Process the decoded data values

Thefirst step isthe creation of adecode buffer. Asn1Mder DecodeBuffer has a constructor that accepts messages stored
in a byte array. It also has a constructor that accepts a System.|O.Stream so that messages may be streamed from
various sources, such asfrom afile.

The second step is to invoke the generated decode method. The calling arguments were described earlier.

Thefinal step isto apply your application-specific processing to the data. All datais contained within public member
variables so accessis quite easy.

A complete example showing how to invoke a decode method is as follows:

try {
/1l Step 1: create a decode buffer for the nessage to be decoded.
/1 This exanple will use a file input streamto decode a nessage

/1 in a binary file.

116

Generated MDER Decode Methods

/1l Create an input file stream object
Streamins = File.OpenRead(filename);

/1l Create a decode buffer object
AsnlMler DecodeBuf f er decodeBuffer = new AsnlMler DecodeBuffer (ins);

/1l Step 2: create an object of the generated type and invoke the
/1 decode nethod. .

Per sonnel Record personnel Record = new Personnel Record ();

per sonnel Recor d. Decode (decodeBuffer);

/]l Step 3: process the data
if (trace) {
System Consol e. Qut . WitelLine ("Decode was successful");
per sonnel Record. Print ("personnel Record");
}
}
catch (Exception e) {
System Consol e. Qut. Wi telLine (e. Message);
AsnlUtil . WiteStackTrace(e, Console.Error);
return;

}
Reuse of Decoding Objects

The sampl e above showed the MDER decoding of asingle message. In atypical application, aloop would beinvolved
to decode a series of messages.

A single decode buffer can be used to process a stream of messages. If the decode buffer is created using an input
stream that contains a series of messages (for example, afile containing multiple records, or acommunications device),
you can repeatedly invoke the MDER decode method on the given message type.

Note that you can also use the same instance of your message type for repeated decoding, rather than creating a new
object and leaving the old one to be garbage collected. Nothing special needs to be done to do this. The generated
decode method will automatically call the internal Init() method before decoding to make sure all items are reset to
their starting state.

In the example above, all that would need to be done to decode a series of personnel recordsisthe inclusion of aloop
after the Personnel Record object was created in step 2:

for () {

per sonnel Recor d. Decode (decodeBuffer);

if (trace) {
System Consol e. Qut . WitelLine ("Decode was successful");
per sonnel Record. Print ("personnel Record");

117

Chapter 16. Table Constraint Processing

The ASN1C C# code generation capability can generate code to process ASN.1 table constraints as specified in the
X.681 and X.682 ASN.1 standards. This code is generated through the use of the -tables option. This instructs the
compiler to generate additional methods and tablesto allow multi-level message types specified using table constraints
to be encoded or decoded with a single method call.

Specia code is generated for the CLASS, Information Object, and Information Object Set items to create the table

necessary to for table constraint processing. Then additional encode and decode methods are generated that use these
tables to branch to the multiple message levels.

CLASS Specification

NOTE: Class code generation is done only when -tablesis specified.

This additional code is generated to support the processing required to verify table constraints, which is intended for
use only in compiler-generated code. Therefore, it is not necessary for the average user to understand the mappings
in order to use the product. The information presented here is informative only to provide a better understanding of
how the compiler handles table constraints.

The C# class generated to model an ASN.1 class contains member variables for each of the fields within the class. To
create an instance of this class, an information object is required to populate these variables with the values defined
in the ASN.1 information object specification.

C# code will be generated for each ASN.1 CLASS definition in a separate C# source file containing a C# class corre-
sponding to the ASN.1 CLASS definition. The name of the source file and classis of the following format:

<Cl assNane>. cs

Inthisdefinition, < ClassName> would bereplaced with the name of the ASN.1 CLASSfor which thisfileisgenerated.

Data Member Generation

For each of the following ASN.1 CLASS fields, a corresponding member variable is generated in the C# class defi-
nition:

For avaluefield:

public <TypeNane> <Fi el dNane>;
For atypefield:

public AsnlType <Fi el dNane>;
For an information object field:

publ i c <O assName> <Fi el dName>;
For an information object set field:

public <O assNane> <Fi el dNane>;

where:

118

Table Constraint Processing

<FieldName> is replaced with the name of the field.
<TypeName> is replaced with the generated runtime C# classname for the ASN.1 Type.
<ClassName> is replaced with the name of the information object class.

For atype field definition, an element with type Asn1Typeis generated which is the base class for al typesin the C#
runtime namespace. A type field can hold a value of any type.

Method and Constructor Generation

Each generated C# class will have two constructors. The first constructor will be the default constructor. This will
initialize each member variable value to null. The second constructor will accept values for all the data members.

Example
As an example, consider the following ASN.1 class definition :

ATTRI BUTE ::= CLASS {
&Type,
& d OBJECT | DENTI FI ER UNI QUE

}
W TH SYNTAX { W TH SYNTAX &Type ID & d }

A file named ATTRIBUTE.cs is generated with following definition:

public class ATTRI BUTE {
public AsnlType Type;
public AsnlQojectldentifier id;

public ATTRIBUTE() ({
Type = null;
id=null;

}

publ i c ATTRI BUTE(
AsnlType Type._,
AsnlChjectldentifier id_

) |
Type = Type_;
id=id_;
}
}

NOTE: If the ASN.1 type name is same as the ASN.1 class name (ignoring case) in a single module definition, then
the ASN.1 class name will be changed to the following;:

<Cl assName>_ CLASS

Inthisdefinition, <ClassName> would be replaced with thename of the ASN.1 CLASSandtheliteral token“_CLASS’
would be appended.

For example:

Test DEFINITION ::= BEG N

119

Table Constraint Processing

Attribute ::= | NTEGER
ATTRI BUTE : : = ABSTRACT- SYNTAX
END

ASNI1C will changethe ATTRIBUTE classnameto ATTRIBUTE_CLASS to avoid conflicts with the Attribute type.

This automated feature will help usersto successfully compile the generated code without having to manually change
the name via a configuration file setting.

Additional C# classes are generated to create types for fields within the class definitions as follows:
1. New type assignments are created for TypeField type definitions as follows:
<Cl assNanme> <Fi el dName> :: = <Type>

Here ClassNameis replaced with name of the Class Assignment and FieldName is replaced with name of the field.
Typeisthetype definition in the ASN.1 CLASS s TypeField.

Thistypeis used as adefined type in the information object definition for absent values of the TypeField. Itisalso
useful for the user to generate a value for arelated OpenType definition in atable constraint.

2. New type assignments are created for ValueField or ValueSetField type definitions if the type is with a constraint
definition and/or the typeis Sequence/ Set / Choice/ Sequenceof / SetOf definition.

<C assName><Fi el dNanme> ::= <Type>

Here ClassName is replaced with name of the Class Assignment and FieldName is replaced with name of the
VaueField or VaueSetField. Type is the type definition in The ASN.1 CLASS's VaueField or VaueSetField.
Thistype will appear as adefined typeinthe ASN.1 CLASS s VaueField or ValueSetField.

This new type assignment is used for compiler internal code generation purpose. It is not designed for use by the
end user.

3. New value assignments are created for ValueField default value definitions as follows:
<C assNanme><Fi el dNane>_default <Type> ::= <Val ue>

Here ClassName is replaced with name of the Class Assignment and FieldName is replaced with name of the Val-
ueField. Valueisthe default valuein the ASN.1 CLASS s ValueField and Typeisthetypeinthe ASN.1 CLASS's
VaueField.

Thisvalueis used as a defined value in the information object definition for an absent value of the field. This new
value assignment is used for compiler internal code generation purpose. It is not designed for use by the end user.

ABSTRACT-SYNTAX class

The ASN.1 ABSTRACT-SYNTAX classis auseful class definition used to declare the top-level protocol data units
(PDU’ s) defined within a specification. The class is described using the following ASN.1 definition:

ABSTRACT- SYNTAX ::= CLASS {
& d OBJECT | DENTI FI ER UNI QUE,
&Type,

&roperty BI T STRING { handl es-invalid-encodi ng(0)} DEFAULT {}
}
W TH SYNTAX {

&Type | DENTI FI ED BY & d [HAS PROPERTY &property]

120

Table Constraint Processing

}

ASNIC is used to create a meta-definition for this structure. The definition will be generated in the file
Asn1AbstractSyntax.cs (or AsnlXer AbstractSyntax.csfor XER), if needed by compiling ASN.1 definitions. An object
created from the resulting C# class is populated just like any other compiler-generated structure for working with
ASN.1 data

TYPE-IDENTIFIER class

The ASN.1 TYPE-IDENTIFIER classis a useful class definition for uniquely identifying typed data at runtime. The
classis described using the following ASN.1 definition:

TYPE- | DENTI FI ER :: = CLASS {
& d OBJECT | DENTI FI ER UNI QUE,
&Type

}

W TH SYNTAX { &Type | DENTI FI ED BY & d }

The ASN.1 compiler is used to create a meta-definition for this structure. The definition will be generated in the file
AsnlTypeldentifier.cs (or Asn1Xer Typeldentifier.cs for XER), if needed by compiling ASN.1 definitions. An object
created from the resulting C# class is populated just like any other compiler-generated structure for working with
ASN.1 data.

Information Object

NOTE: Information Object code generation is only done when the -tables option is selected.

This additional code is generated to support the processing required to verify table constraints, which is intended for
use only in compiler-generated code. Therefore, it is not necessary for the average user to understand the mappings
in order to use the product. The information presented here is informative only to provide a better understanding of
how the compiler handles table constraints.

Information Object code will be generated in a C# source file with a special class to hold the values. The name of the
source file and class is of the following format:

_<Modul eNane>Val ues. cs

In this definition, <ModuleName> would be replaced with the name of the ASN.1 module in which the values are
defined.

For each Information Object defined within a specification, a C# constant is generated which is an instance of the
ASN.1 CLASS definition for the object. Each Information Object constant calls the Class constructor with the field
value specified in the ASN.1 information object definition.

If the ASN.1 CLASS field is optional and the field value is absent in the Information Object definition, then its cor-
responding member variable will be initialized to "null". If the ASN.1 CLASS field has a default value and its field
value is absent in the Information Object, then the generated code for the Information Object will set the Classfield's
valueto the default value.

ASN.1 definition:
<name> <O assNanme> ::= <Infobject>

Generated C# constants:

121

Table Constraint Processing

public static readonly <C assNane> <nanme> =
new <Cl assNane> (<InfoCbject val ues>>);

For example, consider the following Information Object declaration for the above ATTRIBUTE class:

name ATTRI BUTE :: = {
W TH SYNTAX Vi si bl eString
ID{ 011}

}

Thiswould result in the following C# constant being generated:

public static readonly ATTRIBUTE nane =
new ATTRI BUTE (
new AsnlVi si bl eString(),
new AsnlQbj ectldentifier(new int[]{0, 1, 1}));

NOTE: The following new Type Assignment is created for each TypeField' s type definition if the type is one of the
following ASN.1 built-in types: Sequence/ Set / SequenceOf / SetOf / Choice/ Constrained Type/ Enumerated Type/
Namedinteger Type/ NamedBitList Type/ ParameterizedType:

<Qoj ect Narre><Fi el dName> ::= <Type>

Here ObjectName s replaced with name of the Object Assignment. If Object isdefined in ObjectSet, then ObjectName
is replaced with the name of the ObjectSet Assignment. FieldName is replaced with name of this type field. Typeis
the type definition in Object’ s typefield.

This type is used as Defined Type in the information object definition for type field. It is also useful for the user to
generate value for related OpenType definition in table constraint.

Information Object Set

NOTE: Information Object Set code generation is only done when the -tables option is selected.

This additional code is generated to support the processing required to verify table constraints which is intended for
use only in compiler-generated code. Therefore, it is not necessary for the average user to understand the mappings
in order to use the product. The information presented here is informative only to provide a better understanding of
how the compiler handles table constraints.

Information Object code will be generated in a C# source file with a specia class to hold the values. The name of the
source file and class is of the following format:

_<Mbdul eNane>Val ues. cs

In this definition, <ModuleName> would be replaced with the name of the ASN.1 module in which the Information
Object Sets are defined.

Each Information Object Set specification causes a C# constant to be generated containing an array of Information
Object values. Each object in the array is an instance of the equivalent C# class representing the corresponding ASN.1
information object

As of thiswriting, a static array is used to hold the objects, but this could be changed to something like a linked list
or hash.

ASN.1 definition:

122

Table Constraint Processing

<nanme> <C assNane> ::= { <Information Objectl> | <Information Object2> }
Generated C# constants:

public static readonly <C assNane> <name> =
new <Cl assName> {<Information Objectl> <Information bjectl> };

For example, consider the following Information Object Set declaration for above ATTRIBUTE definition:
SupportedAttri butes ATTRIBUTE ::= { nane | comobnNane }
Thiswould result in the following C# constant being generated:

public static readonly ATTRIBUTE[] SupportedAttributes =
new ATTRI BUTE[] {
_Test Val ues. nane,
_Test Val ues. cormonNane

};

Generated Information Object Table Structure

Information Objects and Classes are used to define multi-layer protocols in which “holes’ are defined within ASN.1
types for passing message components to different layers for processing. These items are also used to define the
contents of various messages that are allowed in a particular exchange of messages. The ASN1C compiler extractsthe
types involved in these message exchanges and generates encoders/decoders for them. The “holes” in the types are
accounted for by adding open type holders to the generated structures. These open type holders consist of a byte array
for storing information on an encoded message fragment for processing at the next level.

The ASN1C compiler is capable of generating code in one of two forms for information in an object specification:

1. Simpleform: inthisform, referencesto variable type fields within standard types are simply treated as open types
and an open type placeholder isinserted.

2. Tableform: inthisform, al of the classes, objects, and object sets within a specification result in the generation
of code for parsing and formatting the information field references within standard type structures.

The second form is selected by specifying the —tables command line option.

To better understand the support in this area, the individual components of Information Object specifications are
examined. We begin with the “CLASS’” specification that provides a schema for Information Object definitions. A
sample class specification is as follows:

OPERATI ON : : = CLASS {
&oper ati onCode CHO CE { | ocal | NTEGER,
gl obal OBJECT | DENTI FI ER }
&Ar gunent Type,
&Resul t Type,
&Errors ERROR OPTI ONAL

}

Users familiar with ASN.1 will recognize this as a simplified definition of the ROSE OPERATION MACRO using
the Information Object format. When aclass specification such asthisis parsed, information onitsfieldsis maintained
in memory for later reference. In the ssimple form of code generation, the class definition itself does not result in the
generation of any corresponding C# code. It is only an abstract template that will be used to define new items later

123

Table Constraint Processing

on in the specification. In the table form, a C# container class is generated to hold the Information Object instances
of the ASN.1 CLASS.

Fieldsfrom within the class can be referenced in standard ASN. 1 types. It isthese types of references that the compiler
ismainly concerned with. These aretypically “header” typesthat are used to add acommon header to avariety of other
message body types. An example would be the following ASN.1 type definition for a ROSE invoke message header:

I nvoke ::= SEQUENCE {
i nvokel D | NTEGER,
opcode OPERATI ON. &oper at i onCode,
ar gumrent OPERATI ON. &Ar gunrent Type

}

Thisisavery simple casethat purposely omitsalot of additional information such as |nformation Object Set constraints
that are typically part of definitions such as this. The reason this information is not present is because we are just
interested in showing the items that the compiler is concerned with. We will use this type to demonstrate the simple
form of code generation. We will then add table constraints and discuss what changes when the —tables command
line optionsis used.

The opcode field within this definition is an example of afixed type field reference. It is known as this because if you
go back to the original class specification, you will see that operationCode is defined to be of a specific type (namely
a choice between alocal and global value). The generated typedef for this field will contain a reference to the type
from the class definition.

Theargument field isan example of avariable typefield. Inthiscase, if you refer back to the class definition, you will
see that no typeis provided. This means that this field can contain an instance of any encoded type (note: in practice,
table constraints can be used with Information Object Sets to limit the message types that can be placed in this field).
The generated typedef for thisfield contains an “open type” (C# Asn1OpenType class) reference to hold a previously
encoded component to be specified in the final message.

Simple Form Code Generation

In the simple form of information object code generation, the Invoke type above would result in the following C#
typedefs being generated:

public class Invoke : AsnlType {
public Asnllnteger invokelD
publ i ¢ OPERATI ON_oper ati onCode opcode;
public AsnlQpenType argumnent;

}
The following would be the procedure to add the Invoke header type to an ASN.1 message body:

1. Encode the body type

2. Get the message bytes and length of the encoded body

3. Plug the bytesinto the “ data” argument of the open type constructor in the Invoke type variable.
4. Populate the remaining Invoke type fields.

5. Encode the Invoke type to produce the final message.

In this case, the amount of code generated to support the information object references is minimal. The amount of
coding required by a user to encode or decode the variable type field elements, however, can be rather large. This

124

Table Constraint Processing

is a trade-off that exists between using the compiler generated table constraints solution (as we will see below) and
using the simple form.

Table Form Code Generation

If we now add table constraints to our original type definition, it might look as follows:

I nvoke ::= SEQUENCE {
i nvokel D | NTECER,
opcode OPERATI ON. &oper ati onCode ({M-ops}),

ar gunent OPERATI ON. &Ar gunent Type ({My-ops}{ @pcode})
}

The“{My-ops}” constraint on the opcode element specifies an information object set (not shown) that constrains the
element value to one of the values in the object set. The {My-ops}{ @opcode} constraint on the argument element
goes a step further — it ties the type of the field to the type specified in the row that matches the given opcode value.
ASN1C generates an in-memory table for each of theitemsin the information object sets defined in a specification. In
the example above, atable would be generated for the My-ops information abject set. The code generated for the type
would then use this table to verify that the given items in a structure that reference this table match the constraints.
The C# type generated for the SEQUENCE above when —tables is specified would be as follows:

public class Invoke : AsnlType {
public Asnll nteger invokel D
publ i c OPERATI ON oper ati onCode opcode;
public AsnlType argunent;

}

Thisisamost identical to the type generated in the simple case. The differenceisthat ASN1Typeisused instead for the
argument element instead of ASN1OpenType. Thistypeis defined asthe base class for al the generated ASN.1 types.
It holds the value to be encoded or decoded. The way a user Would use thisto encode avalue of thistypeisasfollows:

1. Populate avariable of the type to be used as the argument to the invoke type.
2. Assign it to the argument member variable in the structure above.

3. Populate the remaining Invoke type fields.

4. Encode the Invoke type to produce the final message.

Note that in this case, the intermediate type does not need to be manually encoded by the user. The generated encoder
has logic built-in to encode the complete message using the information in the generated tables.

Additional Code Generated for the -tables Option

Thefollowing additional codeis generated for type definitions when the the -tables command-line option is used. The
code generated to support table constraints is intended for use only in compiler-generated code. Therefore, it is not
necessary for the average user to understand the mappingsin order to use the product. Theinformation presented here
isinformative only to provide a better understanding of how the compiler handles table constraints.

An equals() method will be generated for Sequence, Set, Sequence Of, Set Of or Choice types if required for table
constraint processing. Thismethod will be animplementation of the Asn1Type.equals() virtual method. These methods
are used by the generated code to verify that data in a generated structure to be encoded (or data that has just been
decoded) matches the table constraint values.

125

Table Constraint Processing

An additional table constraint check method is also generated for each type that contains table constraints. These
functions have the following prototypes:

BER/DER:
voi d CheckTC (bool decode);
PER:
voi d CheckTC (bool decode, bool aligned);

The decode argument is used to decide if this method is to used for encoding or decoding. The aligned argument is
for PER and specifies whether aligned or unaligned encoding/decoding isin effect.

The purpose of these methods isto verify that the fixed values within the table constraints are what they should be and
to encode or decode the open type fields using the encoder or decoder methods from the Asn1Type objects assigned to
the given table row. Calls to these functions are automatically built into the standard encode or decode functions for
the given type. They should be considered hidden functions not for use within an application that uses the API.

The CheckTC method will have different logic for relative and simpletable constraints. Thelogic to invoke thismethod
isasfollows:

On the encode side:
Relative Table Constraint:

1. Thetable constraint key is searched in the object set array to find the class object for the datain the populated type
variable to be encoded.

2. If the key element value is NOT found and the table constraint object set is extensible, the CheckTC method will
do no further processing (i.e. a value field match will not be performed). The user will have had to populate the
type field using an Asn1OpenType object in order for it to be encoded because the generated table contains no
information on how to encode the value.

3. If the key element valueisfound, the method will verify al fixed type values match what is defined in the key row
of the object set and will also verify that the type of any variable type fields matches the expected type.

4. If the key element value is not found in the table (or object set) and the object set is NOT extensible, then atable
constraint violation exception will be thrown.

Smple Table Constraint:

1. The CheckTC method will verify that al of the fixed type values match what is defined in the table constraint object
set. If the element value does not exist in the table (or object set) and the object set is NOT extensible, then atable
constraint violation exception will be thrown.

After the CheckTC method call, the normal encode logic is performed.
For decoding, the logic is reversed:

The normal decode logic is performed first to popul ate the standard and open type fieldsin the generated structure.
After that, the CheckTC method is invoked to perform the following table constraint checks:

Relative Table Constraint:

1. Thetable constraint key is searched in the object set array to find the class object for the datain the populated type
variable to be encoded.

126

Table Constraint Processing

2. If the key element value is NOT found and the table constraint object set is extensible, the CheckTC method will
do no further processing (i.e. avalue field match will not be performed) and the variable type fields will be stored
as open types (i.e. as instances of C# Asn1OpenType classes). The user will be responsible for further decoding
of the open type value.

3. If thekey element value isfound, the CheckTC method will verify al fixed type values match what isdefined in the
key row of the object set and will fully decode al type fields according to the key row type and store the resulting
decoded type in the ASN1Type fields.

4. If the key element value is NOT found in the table (or object set) and the object set isNOT extensible, then atable
constraint violation exception will be thrown.

Smple Table Constraint:
1. This function will verify all the fixed type values match what is defined in the table constraint object set. If an

element value does not exist in the table (or object set) and the object set isNOT extensible, then atable constraint
violation exception will be thrown.

Populating OpenType Variables for Encoding

When the -tables option is used, open type fields are generated as Asn1Type fields. The general procedure to populate
the values for these fields is as follows:

1. Check the possible type in the object set from the indexed element value.
2. Populate the value for this type and assign it to the open type member variable.
3. Follow the common encode procedure.

A complete example showing how to assign open type values when table constraint code is generated is as follows:

ATTRI BUTE ::= CLASS {
&Type,
& d OBJECT | DENTI FI ER UNI QUE }

W TH SYNTAX {
W TH SYNTAX &Type ID & d }

name ATTRI BUTE ::= {
W TH SYNTAX Vi si bl eString
ID {011} }
comonName ATTRI BUTE :: = {
W TH SYNTAX | NT GER
ID {0121} }
SupportedAttri butes ATTRIBUTE ::= { nane | comobnNane }
I nvoke ::= SEQUENCE {

opcode ATTRI BUTE. &i d ({SupportedAttributes}),
argunent ATTRI BUTE. &Type ({SupportedAttri butes}{@pcode})

}

Inthe above example, the Invoke type contains arel ative table constraint. Its element opcodereferstothe ATTRIBUTE
class'sid field and the argument element refersto ATTRIBUTE class's Type field. The opcode element is the index

127

Table Constraint Processing

element into the { SupportedAttributes} information object set. The argument el ement is an open type but its type must
match that specified at the location in the { SupportedAttributes} information object set indexed by opcode.

In this example, opcode can have only two possiblevalues{ 011} or{ 01 2}. If the opcode valueis{ 0 1 1} then
argument must be avalue of type VisibleString. If the opcode valueis{ 01 2} then argument will have an INTEGER

value. Any other value of the opcode element will be aviolation of the table constraint.

If the SupportedAttributes object set is extensible (in this example, it isnot), then the argument element can be avalue
of any type. In this case, if the user is using an index element value outside the object set, then the user will have to

encode the argument element as an Asn1OpenType.

The following sample code populates the open type value:

/1

Step 1: populate the “Invoke” type with data

I nvoke pdu = new | nvoke();
pdu. opcode = new AsnlObjectldentifier(newint[]{0, 1, 1});
pdu. ar gunment = new AsnlVisi bl eString(“objsys”);

/1
/1

/1
/1

/1

note: opcode value is {0 1 1}, so argunent nust be
AsnlVi sibleString type

note: the rest of the encode nmethod will be sane as general
PER/ DER/ BER encodi ng rul es

Step 2: Create a nessage buffer object.

AsnlPer EncodeBuf f er encodeBuffer = new AsnlPer EncodeBuffer();

/1l Step 3: Invoke the encode nethod. Note that it nust be done
/1 fromwithin a try/catch bl ock..
try {

pdu. Encode (encodeBuffer);

if (trace) {
System Consol e. Qut . Wi teLine ("Encodi ng was successful ");
System Consol e. Qut . WiteLine ("Hex dunmp of encoded record:");
encodeBuf f er. HexDunmp () ;
System Consol e. Qut . WitelLine ("Binary dunp:");
encodeBuf fer. Bi nDunp (“Invoke”);

}

/1l Step 3: Access the encoded message component. In this

/1 case, we use nethods in the class to wite the conponent
// to a file and output a formatted dunp to the message. dnp
/Il file..

/[l Wite the encoded record to a file
encodeBuffer. Wite(new System | O Fi | eSt rean(
filenane, System 1O FileMde.Create));

/1 Generate a dunp file for comparisons
System |1 O StreaniWiter messagednp =
new System 1O StreamWiter(new System | O Fil eStrean(
"message. dmp”, System | O Fil eMbde. Create));
messagednp. Aut oFl ush = true;
encodeBuf f er . HexDunp(messagednp) ;

/1 W can also directly access the buffer as foll ows:

128

Table Constraint Processing

byte[] buffer = encodeBuffer.Buffer;
int meglen = encodeBuffer. MsgByteCnt;

}

catch (Exception e) {
System Consol e. Qut . WiteLine (e. Message);
AsnlUtil . WiteStackTrace(e, Console.Error);
return;

}

Theimportant thing to noteisthat not much changes from the normal procedure. The only significant differenceisthat
now the argument field can be directly populated with an instance of itstarget type. Without table constraint checking
logic, this value would have to have been first encoded and then placed in an Asn1OpenType container object.

Decoding Types with Table Constraints

The general procedure to decode an ASN.1 message with table constraint is the same as without table constraints. The
only differenceisthat after decoding, variable type fields will be replaced with instanced of the actual types they are
specified to contain in the associated object set instead of with generic Asn1OpenType fields.

129

Chapter 17. Generated Print Methods

The —print option causes print methods to be generated. These functions can be used to print the contents of variables
of generated types. A print method is generated in each of the generated C# source files.

Generated C# Method Format and Calling Para-
meters

There are two signatures for generated print methods which are as follows:
Thefirst signature generated allows printing to any output stream:

public override void Print (System|Q StreamNiter outs,
string var Nane,
int level)

The outs argument specifies a System.|O.SreamWriter object to which the output will be written. The C# class
System.|0.Sream may be popul ated with System.Console.Out to write directly to standard output.

The varName argument is used to specify the top-level variable name of the item being printed. Normally, thiswould
be set to the same name as the variable declared in your program that holds the object being printed. For example,
if you declared a variable called personnelRecord to hold a PersonnelRecord object, the varName object would be
set to “ personnel Record”.

The level argument is used to specify the indentation level for printing nested types. The user would always want to
set thisto zero at the outer-level.

The second signature exists in the Asnl1Type base class. This provides a simplified interface for printing to standard
output. In this case, the outs and level arguments are omitted:

public override void Print (string varNane)

The varName argument is same as in the first case above.

For example, the call to print the personnel Record from the previous examples would be as follows:
per sonnel Record. Print ("personnel Record");

The output would be formatted as follows:

per sonnel Record ({
nane {
gi venNane = ' John'
initial ="'PF
fam | yName = 'Smth'
}
nunber = 51
title = "Director’
dateOfH re = '19710917
nanmeCf Spouse {
gi venNane = ' Mary'
initial ="'T
fam | yName = 'Smth'

130

Generated Print Methods

}
children[0] {
nane {
gi venNane = ' Ral ph’
initial ="'T

fam | yName = 'Smth'

}
dateCfBirth = '19571111'

}
children[1] {

nane {
gi venNane = ' Susan’
initial ="'B
fam | yName = ' Jones'

}
dateCfBirth = '19590717'

131

Chapter 18. Generated Metadata Methods

In version 6.8, ASN1C adds the ahility to generate methods to inspect the elements in a SEQUENCE or SET. Using
the - gennet adat a option, users can generate the following methods:

 public static bool IsRequired (String el emNane)
throws Asnll nval i dEl enException

 public static bool GetValueRange (String el enNane, AsnlVal ueRange range)

These methods provide access to syntactic information present in the schema used during code generation: whether
the elements in a SEQUENCE or SET are required or optional, and what, if any, value range may be applied to the
elements. The following sections describe these methods in detail.

| sRequi r ed

Thel sRequi r ed method has the following signature:

public static bool IsRequired (String el enNane)
t hrows Asnll nval i dEl emExcepti on

The method returnst r ue when the element given by el eniNane is required to be present in the given SEQUENCE
or SET and f al se when it is not. In the event that the named element is not a member of the structure, the
Asnll nval i dEl enExcept i on isthrown.

The following ASN.1, taken from a dightly-modified version of the Employee sample program, provides a good
example:

Per sonnel Record ::= [APPLI CATION O] IMPLICI T SET {
nanme Narre,
title [0] | A5String,
nunber Enpl oyeeNunber ,
dateOrHire [1] Dat e,
nanmeCf Spouse [2] Nane,
children [3] | MPLI CI' T SEQUENCE OF Chi | dl nformati on,
sal ary | NTEGER (0..10000) OPTI ONAL
}

There are seven total elements. oneis optiona and the others are required. The generated code is straightforward:

public static bool IsRequired (String el emNane)
t hrows Asnll nval i dEl emExcepti on
{
i f (el emNane. Equal s("salary")) {
return fal se;
}
el se if (el enNane. Equal s("name")) {
return true;
}
el se if (el enNane. Equal s("nunber")) {
return true;
}
el se if (el enmNane. Equal s("title")) {
return true;

132

Generated Metadata M ethods

}
el se if (el enNane. Equal s("dateOHire")) {

return true;

}

el se if (el enNane. Equal s(" nameCf Spouse™)) {
return true;

}
el se if (el enNane. Equal s("children")) {

return true;

}

t hrow new Asnll nval i dEl enExcepti on(el emNane) ;
}

Get Val ueRange

The Get Val ueRange method has the following signature:
public static bool GetValueRange (String el enNane, AsnlVal ueRange range)

The method returnst r ue when the value ranger ange has been set by the method and f al se when it has not been
set. No exceptions are thrown by this method.

The following ASN.1, taken from a dightly-modified version of the Employee sample program, provides a good
example:

Per sonnel Record ::= [APPLICATION 0] IMPLICIT SET {
name Name,
title [0] | A5Stri ng,
nunber Enpl oyeeNunber,
dateOrHire [1] Dat e,
nanmeCf Spouse [2] Nane,
chil dren [3] | MPLI CI' T SEQUENCE OF Chi | dI nfornmati on,
sal ary | NTEGER (0..10000) OPTI ONAL
}

The generated code is straightforward:

public static bool GetValueRange (String el enNane, AsnlVal ueRange range)
{
i f (el emNane. Equal s("salary")) {
range. mn = O;
range. max = 10000;
return true;

}

return fal se;

133

Chapter 19. Generated Makefile

The -genmake option causes a makefile to be generated. The makefile can be used to compile the generated source
files to create the asnlapi.dll library. User can use the nmake command in Visual Studio .NET command prompt to
use this makefile.

When a makefile is generated, it is assumed that the ASN1C project exists within the ASN1C installation directory
tree. The generation logic triesto determine the root directory of the installation by traversing upward from the project
directory in an attempt to locate the csharp subdirectory which is assumed to be the installation root directory. If the
project is located outside of the ASN1C hierarchy, the user can set the OSROOTDIR environment variable to point
at the root directory.

If theroot directory islocated successfully, the generated build script will use that directory; however, if the compiler
failsto find the installation root directory, it will use @ROOT_DIR@ instead and print an error message. Users will
have to manually replace @ROOT_DIR@ with the actual compiler installation root directory.

If the compiler failsto find the asn1rtcs.dll runtimelibrary, it will use @ASN1IRTCS DIR@ instead and print an error
message. User will have to manually replace @ASNIRTCS_DIR@ with the actual C# runtime library directory.

134

Chapter 20. Event Handler and Exception
Handler Interfaces

The —events command line switch causes hooks for user-defined event and exception handlers to be inserted into the
generated C# decode methods. Event handlers fire when key message-processing events occur during the course of
parsing an ASN.1 message. What the event handler doesis up to you. They are similar in functionality to the Simple
API for XML (SAX) that was described earlier for parsing XML messages.

The exception handler is invoked when the decoder would otherwise throw certain exceptions. Y ou can choose to
ignore the exception or throw a different exception.

Event Handlers

How Event Handlers Work

Users of XML parsers are probably aready quite familiar with the concepts of SAX. Significant events are defined
that occur during the parsing of amessage. As a parser works through a message, these eventsare ‘fired' asthey occur
by invoking user defined callback functions. These callback functions are al'so known as event handler functions. A
diagram illustrating this parsing process is as follows:

CAOACA®

ASIN.1 MESSA{s

Parser { ASN.1
— decode function)

The events are significant actions that occur during the parsing process. The following events are defined that will be
passed to the user when an ASN.1 message is parsed:

1. StartElement — This event occurs when the parser moves into a new element. For example, if we have a SE-
QUENCE{ & b, c} construct (type names omitted), this event will fire when we begin parsing a, b, and c. The
name of the element is passed to the event handling callback function.

2. EndElement — This event occurs when the parser leaves a given element space. Using the example above, these
would occur after the parsing of a, b, and ¢ are complete. The name of the element is once again passed to the
event handling callback function.

3. Characters method — This method is defined to pass all of the different types of primitive values that are encoun-
tered when parsing a message. The primitive values are passed out in a stringified form.

135

Event Handler and Exception Handler Interfaces

The methods corresponding to these events are defined in Asn1lNamedEventHandler interface.

The start and end element methods are invoked when an element is parsed within a constructed type. The start method
isinvoked as soon as the tag/length is parsed in a BER or DER message. The end method isinvoked after the contents
of the field are processed. The signature of these methodsis as follows:

void StartEl enent (string nanme, int index);
voi d EndEl enent (string nane, int index);

The name argument isused passthe element name. Theindex argument isused for SEQUENCE OF/SET OF constructs
only. It is used to pass the index of theitem in the array. This argument is set to —1 for all other constructs.

The Characters method is used to pass out ASN.1 primitive data. This is a departure from the C++ event handler
methodology in which separate methods are defined for al of the different data types. This implementation is more
closely aligned with the standard SAX implementation for XML. The reason it is done thisway in C# and not C++ is
because it is much easier to stringify values. Since memory management is built-in to C#, it is easy to create a string
and passit out. Thisis a problem in C++ because it becomes a performance issue if too many malloc’s are done and
it also places a burden on the user to free the memory for the allocated strings.

The signature for the Characters method is as follows:
void Characters (string svalue, short typeCode);

The svalue argument contains the stringified value. The format of this value is ASN.1 value notation for the value
as defined in the X.680 standard. The typeCode argument contains an identifier that specifies the ASN.1 type of the
value. The identifier corresponds to the universal identifier values (the ID number in the universal tags) for each of
the primitive data types. The only exception to thisrule is that the identifier 99 was added to represent an Open Type
construct. Constants for al of the identifier values are provided in the Asn1Type class. See the C# documentation for
this classfor alist of the constants.

How to Use Event Handlers

To define event handlers, two things must be done:
1. One or more new classes must implement the Asn1NamedEventHandler interface.

2. Objects of these classes must be created and registered prior to calling the generated decode method for a particular
type.

The best way to illustrate this procedure is through examples. We will first show asimple event handler application to
provide a customized formatted printout of the fieldsin a BER message. Then we will show asimple XML converter
classthat will convert the datain a BER messageto XML.

Example 1: A Formatted Print Handler

The ASN1C evauation and distribution kits include a sample program for doing aformatted print of parsed data. This
code can be found in the csharp/sample_ber/EventHandler directory. Parts of the code will be reproduced here for
reference, but refer to this directory to see the full implementation.

The format for the printout will be simple. Each element name will be printed followed by an equal sign (=) and an
open brace ({) and newline. The value will then be printed followed by another newline. Finally, a closing brace (})
followed by another newline will terminate the printing of the element. An indentation count will be maintained to
allow for aproperly indented printout.

136

Event Handler and Exception Handler Interfaces

Wewill first createaclasscalled PrintHandler that implementsthe Asn1NamedEventHandler interface and handlesthe
formatted printing of the data. Therulefor theimplementation of interfacesisthat you must provide animplementation
for each of themethodslisted. That isit. Y ou can add as many additional methods, member variables, etc., that you like.

The PrintHandler implementation that we created is as follows:

class PrintHandler : AsnlNanedEvent Handl er {

protected string mvar Nane;
protected int ml ndent Spaces = 0;

public PrintHandler (string varName) ({
nVar Nane = var Nane;
System Consol e. Qut . WitelLine (nVarName + " = {");
m ndent Spaces += 3;

}

public void StartEl enent (string nane, int index) {
I ndent () ;
System Consol e. Qut. Wite (name);
if (index >= 0)
System Consol e. Qut. Wite ("[" + index + "]");
System Consol e. Qut. WiteLine (" = {");
m ndent Spaces += 3;
}

public void EndEl ement (string name, int index) ({
m ndent Spaces -= 3;
I ndent ();
System Consol e. Qut. WiteLine ("}");

}

public void Characters (string svalue, short typeCode) {
I ndent ();
System Consol e. Qut. WitelLine (sval ue);

}

private void Indent () {
for (int i = 0; i < mndentSpaces; i++)
System Console. Qut . Wite (" ");

In this definition, we chose to add the mVarName and mindentSpaces member variables to keep track of theseitems.
The user isfree to add any type of member variables he or she wants. The only firm requirement in defining this class
is the implementation of the methods defined in the interface.

We implement these methods as follows:

In SartElement, we print the name, equal sign, and opening brace:

public void StartEl ement (string name, int index) ({

I ndent () ;
System Consol e. Qut. Wite (nane);
if (index >= 0)
System Console. Qut . Wite ("[" + index + "]");

137

Event Handler and Exception Handler Interfaces

System Consol e. Qut . WiteLine (" = {");
m ndent Spaces += 3;

}

In this simplified implementation, we simply indent (this is another private method within the class) and print out the
name, equal sign, and opening brace. We then increment the indent level. Logic is also present to check the index
valueto seeif it iszero or greater. If it is, an array subscript is added to the element name.

In EndElement, we simply terminate our brace block as follows:

public void EndEl ement (string name, int index) ({
m ndent Spaces -= 3;
I ndent ();
System Consol e. Qut. WiteLine ("}");

}
The Characters method simply indents and prints the stringified value:

public void Characters (string svalue, short typeCode) {
I ndent ();
System Consol e. Qut. WitelLine (sval ue);

}

That completes the PrintHandler class implementation.

Next, we need to create an object of the class and register it prior to invoking the decode method. In the Reader.cs
program, the following lines do this:

/'l Regi ster event handl er object

Print Handl er printHandl er = new PrintHandl er ("personnel Record");
decodeBuf f er . AddNamedEvent Handl er (printHandl er);

The addEventHandler method defined in the Asn1DecodeBuffer base class is the mechanism used to do this. Note
that event handler objects can be stacked. Severa can be registered before invoking the decode function. When thisis
done, the entire list of event handler objects is iterated through and the appropriate event handling callback function
invoked whenever a defined event is encountered.

The implementation is now complete. The program can now be compiled and run. When this is done, the resulting
output is as follows:

enpl oyee = {
name = {
gi venNane = {
"John"
}
initial = {
" pn
}
fam | yName = {
"Sm th"
}

This can certainly be improved. For one thing it can be changed to print primitive values out in a “name = value’
format (i.e., without the braces). But this should provide the general idea of how it is done.

138

Event Handler and Exception Handler Interfaces

Example 2: An XML Converter Class

The ASN1C XML Encoding Rules (XER) encode and decode capabilities were presented in an earlier section of this
document. An alternate way to create an XML document from ASN.1 data is through the event handler interface.

It turns out that with event handlers, this conversion is fairly easy. As the handler events fire, all of the required
symbolic datais passed out to generate an XML document. The programmer is free to massage this data any way he
or she wants to comply with whatever DTD or XML Schemaisin use.

The ToXML sample program demonstrates the conversion of ASN.1 datato XML using event handlers. The sample
is not intended to be a robust implementation — it is merely designed to provide guidance in how one would go about
doing this transformation.

The sample program can be found in the csharp/sample_ber/ToXML subdirectory within the ASN1C installation. The
complete class definition for the XMLHandler classis asfollows:

cl ass XM_Handl er : AsnlNanedEvent Handl er {
protected string mvar Nane;
protected int m ndent Spaces = O;

public XM.Handl er (string varNane) {
nVar Name = var Nane;
System Consol e. Qut. WitelLine ("<" + nmVarName + ">");
m ndent Spaces += 3;

}

public void StartEl ement (string name, int index) ({
I ndent () ;
System Consol e. Qut . WiteLine ("<" + nanme + ">");
m ndent Spaces += 3;

}

public void EndEl enent (string nane, int index) {
m ndent Spaces -= 3;
I ndent ();
System Console. Qut . WiteLine ("</" + name + ">");

}
public void Characters (string svalue, short typeCode) ({
I ndent ();
string typeName = new string (AsnlType. get TypeNane(typeCode));
typeNane. Replace (' ', '_');
System Console. Qut . Wite ("<" + typeNane + ">");
System Consol e. Qut. Wite (sval ue);
System Consol e. Qut . WiteLine ("</" + typeName + ">");
}

public void Finished () {
System Console. Qut. WiteLine ("</" + nVarNane + ">");

}

private void Indent () {
for (int i = 0; i < mndentSpaces; i++)
System Console. Qut . Wite (" ");

139

Event Handler and Exception Handler Interfaces

}

Thisisvery smilar to the PrintHandler class defined earlier. The SartElement method simply opensan XML element
block:

public void StartEl enent (string nane, int index) {
I ndent () ;
System Consol e. Qut . WiteLine ("<" + name + ">");
m ndent Spaces += 3;

}

The EndElement method closesit:

public void EndEl enent (string nane, int index) {
m ndent Spaces -= 3;
I ndent ();
System Consol e. Qut. WiteLine ("</" + nane + ">");

}

The Characters method outputs the data with a type wrapper:

public void Characters (string svalue, short typeCode) {

I ndent ();
string typeName = new string (AsnlType. get TypeNane(typeCode));
typeNane. Repl ace (' ', '_');

System Consol e. Qut. Wite ("<:" + typeNane + ">");

System Consol e. Qut. Wite (sval ue);

System Consol e. Qut. WiteLine ("</:" + typeName + ">");
}

Thisillustrates the use of the typeCode argument for obtaining information on the ASN.1 type of the data. Note that
thisisa simplified version of an XER formatting method. A true implementation would need to do some massaging
of the stringified data to fit the XER rules which, in general, do not follow the ASN.1 value formatting rules. The
implementation would also need some logic to check if the type wrapper should be output or not; it is not always
donein certain cases.

Finally note the constructor and finished method. The constructor prints out the outer-level wrapper tag. Since C# does
not have destructors, a finished method is defined to terminate this tag. This method must be called manualy from
within the application program after the C# decode method. See the Reader.cs program to see how thisis done.

Object registration is done as before in the PrintHandler example. The only difference is that an object of the XML-
Handler classis created instead of the PrintHandler class.

When compiled and executed, the output from the Reader program looks like this:

<Per sonnel Recor d>
<name>
<gi venName>
<I A5String>' John' </ A5Stri ng>
</ gi venNane>
<initial>
<I A5String> P </1A5String>
</initial>
<fam | yNane>
<IA5String> Smth' </1A5String>

140

Event Handler and Exception Handler Interfaces

</ fam | yNane>
</ name>
<nunber >
<| NTEGER>51</ | NTEGER>
</ nunber >
<title>
<IA5String> Director'</1A5String>
</title>
<dat eCf Hi re>
<I A5String>' 19710917' </ 1 A5Stri ng>
</dateCf Hire>
<name Spouse>
<gi venName>
<I A5String> Mary' </ A5String>
</ gi venNane>
<initial>
<IA5String> T </1A5String>
</initial>
<f am | yNane>
<IA5String> Smth' </1A5String>
</ fam | yNane>
</ naneOF Spouse>
<chi |l dren>
<el ement >
<name>
<gi venName>
<I A5String>' Ral ph' </1 A5Stri ng>
</ gi venNane>
<initial>
<IA5String> T </1A5String>
</initial>
<fam | yNane>
<IA5String> Smth' </1A5String>
</ fam | yNane>
</ name>
<dateOfBirt h>
<I A5String> 19571111' </ 1 A5Stri ng>
</dateOBirth>
</ el ement >
<el ement >
<name>
<gi venName>
<I A5Stri ng>' Susan' </ 1 A5Stri ng>
</ gi venNane>
<initial>
<I A5String> B </1A5String>
</initial>
<fam | yNane>
<I A5String>' Jones' </ 1 A5Stri ng>
</ fam | yNanme>
</ name>
<dateOBirt h>
<I A5String>' 19590717' </ 1 A5Stri ng>
</dateOBirth>

141

Event Handler and Exception Handler Interfaces

</ el enent >
</ chil dren>
</ Per sonnel Recor d>

Add an XML document header and you should be able to display this datain XML -enabled browser.

Exception Handlers

Exception handlers are only supported for BER decoding. BER is more amenable to error recovery than some other
encoding rules.

To implement an exception handler, you do two things:

* Implement the Asn1Ber Except i onHandl er interface. In the example below, you can see the signature of the
only method in this interface.

* Instantiate an instance of your exception handler class and set it as the exception handler, using
AsnlBer DecodeBuf f er. Set Excepti onHandl er ().

The following example is taken from the reader program of the cshar p/ sanpl e_ber/ Err or Handl er sample.
In that sample, we illustrate ignoring al of the exceptions that can be ignored. You can see that some exceptions
requuire skipping a TLV (tag-length-value), while others don't require any special action. The runtime documentation
for Asn1Ber Except i onHandl er documentswhat is required to handle each type of exception. Exceptions that
arenot ignored are simply returned by the handler; if we had wanted to, the handler could have constructed some other
exception and returned that, instead.

public class Handl er : AsnlBer Excepti onHandl er
{
public System Excepti on Handl eExcepti on(AsnlExcepti on e,
AsnlBer DecodeBuf fer buffer)
{

try {
if (e is AsnlM ssingRequiredException ||
e i s Asnllnval i dEnunExcepti on)
{
/1ignore exception; no recovery action required
System Consol e. Qut . WiteLine("I GNORED: " + e. Message);
return null;

else if (e is AsnlSeqOr der Exception ||
e i s AsnlUnexpect edEl ement Exception ||
e i s AsnlSet Duplicat eException ||
e i s AsnlNot | nSet Exception ||
e i s Asnllnval i dChoi ceOpti onExcepti on)

{
/1skip the offending el ement
buf f er. Ski pTLV() ;
System Consol e. Qut . WiteLine("I GNORED: " + e. Message);
return null;
}

}
catch (System Exception) {

/lignore: recovery failed
}

142

Event Handler and Exception Handler Interfaces

return e;

Setting the exception handler is simple;

/1l Create a decode buffer object
AsnlBer DecodeBuf f er decodeBuffer =
new AsnlBer DecodeBuffer (ins);

decodeBuf f er. Set Excepti onHandl er (new Handl er ());

143

Chapter 21. IMPORT/EXPORT of Types

ASNI1C allows productions to be shared between different modules through the ASN.1 IMPORT/EXPORT mecha-
nism. The compiler parses but ignores the EXPORTS declaration within amodule. Asfar asit is concerned, any type
defined within amoduleis available for import by another module.

When ASN1C sees an IMPORT statement, it first checks its list of loaded modules to see if the module has aready
been loaded into memory. If not, it will attempt to find and parse another source file containing the module. Thelogic
for locating the sourcefile is as follows:

1. The configuration file (if specified) is checked for a <sourceFile> element containing the name of the source file
for the module.

2. If thiselement is not present, the compiler looks for afile with the name <M oduleName>.asn where module name
is the name of the module specified in the IMPORT statement.

In both cases, the —| command line option can be used to tell the compiler where to ook for the files.

The other way of specifying multiple modulesisto include them all within asingle ASN.1 sourcefile. It ispossibleto
have an ASN.1 source file containing multiple module definitions in which modules IMPORT definitions from other
modules. An example of this would be the following:

Modul eA DEFI NI TIONS ::= BEG N
| MPORTS B From Mbdul eB;

A::=B

END

Modul eB DEFINI TIONS ::= BEG N
B ::= | NTEGER

END

This entire fragment of code would be present in asingle ASN.1 sourcefile.

144

Chapter 22. Compact Code Generation

The -compact command line switch can be used to reduce the amount of source code generated for a given ASN.1
specification. Thisisdone by generating the code for simple definitionsinlinewithin structured type definitionsinstead
of creating separate classes.

For example, consider the following definition:

X ::= [APPLI CATI ON 1] | NTEGER
Y ::= [APPLI CATION 2] OCTET STRING (SIZE (1..32))
Z ::= [APPLI CATI ON 3] SEQUENCE {
X [0] X
y [1] Y
}

In normal mode, the compiler would generate three classes for these productions: one corresponding to X, Y, and Z
respectively. But in compact mode, it isrecognized that auser would normally not beinterested in encoding or decoding
X and Y on their own. They would primarily be interested in encoding or decoding the more complex structured
types (i.e. the PDU’ s) that make up fully formed messages. Taking thisinto account, when —compact is specified, the
compiler will not generate separate classes for X and Y in the above definition. Instead, it will include only the base
types for X and Y in the generated code for the SEQUENCE Z. All logic to handle the tags and constraints will be
built directly into the Z encode and decode methods.

So the result will be only a single class generated (Z) that will contain an Asnlinteger object to represent X and an
Asnl1OctetString object to represent Y. The logic to process the application tags and the size constraint on the octet
string will be generated inline in the encode and decode methodsin Z.

Due to the way some ASN.1 specifications are written, this can have a significant effect in reducing the amount of
generated code. For example, in the TAP3 sample program, the total number of generated classes was reduced from
20to 3.

145

Chapter 23. ASN1C X.208 Support

ASNI1C provides some support for the old X.208 version of the standard through the -asnstd x208 command-line
option.

ASN1C when used with this option contains extensions to handle the older, now withdrawn version of ASN.1. Al-
though this version is no longer supported by the ITU-T, it is still in use today.

Thisversion of the compiler a so containslogic to parse some common MACRO definitionsthat are still in widespread
use despite thefact that MACRO syntax wasretired with thisversion of the standard. The types of MACRO definitions
that are supported are ROSE OPERATION and ERROR and SNMP OBJECT-TY PE.

ROSE OPERATION and ERROR

ROSE stands for “ Remote Operations Service Element” and defines a request/response transaction protocol in which
requests to a conforming entity must be answered with the result or errors defined in operation definitions Variations
of this are used in a number of protocolsin use today including CSTA and TCAP.

The definition of the ROSE OPERATION MACRO that is built into the ASN1C90 version of the compiler is as
follows:

OPERATI ON MACRO :: =
BEG N
TYPE NOTATI ON
VALUE NOTATI ON

Par ameter Result Errors LinkedOperations
val ue (VALUE | NTECER)

Par anet er = ArgKeyword NanedType | enpty

Ar gKeywor d = "ARGUMENT" | " PARAMETER'

Resul t = "RESULT" ResultType | enpty

Errors = "ERRORS" "{"ErrorNanmes"}" | enpty

Li nkedQper ati ons = "LINKED"' "{"LinkedQperationNanes"}" | enpty

Resul t Type = NamedType | enpty

Er r or Nanes = ErrorList | enpty

ErrorlList = Error | ErrorList "," Error

Error = val ue(ERROR) -- shall reference an error val ue
| type -- shall reference an error

-- if no error value is specified

Li nkedQper at i onNanes OperationList | enpty

Qper ati onLi st = Qperation | OperationList "," Operation
Qper ation = val ue(OPERATI ON) -- shall reference an operation val ue
| type -- shall reference an operation type
-- if no operation value is specified
NanmedType = identifier type | type
END

This MACRO does not need to be defined in the ASN.1 specification to be parsed. In fact, any attempt to redefine this
MACRO will beignored. Its definition is hard-coded into the compiler.

What the compiler does with this definition is uses it to parse types and values out of OPERATION definitions. An
example of an OPERATION definition is as follows:

| ogi n OPERATI ON
ARGUMENT SEQUENCE { usernane | A5String, password [A5String }

146

ASN1C X.208 Support

RESULT SEQUENCE { ticket OCTET STRI NG wel coneMessage | A5String }
ERRORS { authenticationFailure, insufficientResources }
=1

In this case, there are two embedded types (an ARGUMENT type and a RESULT type) and an integer value (1) that
identifies the OPERATION. There are also error definitions.

The ASN1C90 compiler generates two types of items for the OPERATION:

1. It extracts the type definitions from within the OPERATION definitions and generates equivalent C# classes and
encoders/decoders, and

2. It generates value constants for the value associated with the OPERATION (i.e., the value to the right of the *::=’
in the definition).

The compiler does not generate any structures or code related to the OPERATION itself (for example, code to encode
the body and header in a single step). The reason is because of the multi-layered nature of the protocal. It is assumed
that the user of such a protocol would be most interested in doing the processing in multiple stages, hence no single
function or structure is generated.

Therefore, to encode the login example the user would do the following: Therefore, to encode the login example the
user would do the following:

1. At the application layer, the Login ARGUMENT structure would be populated with the username and password
to be encoded.

2. Theencode function for Login. ARGUMENT would be called and the resulting message pointer and length would
be passed down to the next layer (the ROSE layer).

3. At the ROSE layer, the Invoke structure would be populated with the OPERATION value, invoke identifier, and
other header parameters. The open type object used to hold the encoded parameter value from step 2 is populated
by creating an Asn1OpenType object using the length of the encoded component.

4. The encode function for Invoke would be called resulting in a fully encoded ROSE Invoke message ready for
transfer across the communications link.

The following is a picture showing this
Application Layer Populate specific message structure (Login. ARGUMENT) and encode.
* Encoded message pointer and length
NG Populate ROSE header message structure (Invoke) and encode.
0s aver S ; - ;
ROSE Layer Open type structure contains message pointer and length from previous step.

* Final encoded message
jprocess:

On the decode side, the process would be reversed with the message flowing up the stack:

1. At the ROSE layer, the header would be decoded producing information on the OPERATION type (based on the
MACRO definition) and message type (Invoke, Result, etc..). Theinvokeidentifier would also be available for use
in session management. In our example, we would know at this point that we got alogin invoke request.

147

ASN1C X.208 Support

2. Based on the information from step 1, the ROSE layer would know that the Open Type field contains a pointer
and length to an encoded Login ARGUMENT component. It would then route this information to the appropriate
processor within the Application Layer for handling this type of message.

3. TheApplication Layer would call the specific decoder associated with the Login. ARGUMENT. It would then have
available to it the username/password the user is logging in with. It could then do whatever application-specific
processing is required with thisinformation (database lookup, etc.).

4. Finadly, the Application Layer would begin the encoding process again in order to send back a Result or Error
message to the Login Request.

A picture showing thisis as follows:

Application Layer Call specific function to decode Login. ARGUMENT and process data.

4 Encoded message pointer and length

Decode ROSE header message structure (Invoke).
Open type structure contains message pointer and length of encoded

Login. ARGUMENT.

+ Encoded ROSE message

Thelogin OPERATION also contains references to ERROR definitions. These are defined using a separate MACRO
that is built into the compiler. The definition of this MACRO is as follows:

ROSE Layer

ERROR MACRO :: =

BEG N
TYPE NOTATI ON :: = Paraneter
VALUE NOTATION ::= val ue (VALUE | NTEGER)
Par anet er = "PARAVETER' NanedType | enpty
NanedType ::= identifier type | type

END

In this definition, an error is assigned an identifying number as well as on optional parameter type to hold parameters
associated with the error. An example of areference to this MACRO for theaut hent i cati onFai | ur e errorin
the login operation defined earlier would be as follows:

applicationError ERROR

PARAMETER SEQUENCE {
errorText | A5String

}

=1

The ASN1C90 compiler will generate atype definition for the error parameter and avalue constant for the error value.
The format of the name of the type generated will be “<name> PARAMETER” where <name> is the ERROR name

148

ASN1C X.208 Support

(applicationError in this case) with the first |etter set to uppercase. The name of the value will simply be the ERROR
name.

SNMP OBJECT-TYPE

The SNMP OBJECT-TYPE MACRO is one of severad MACROs used in Management Information Base (MIB) de-
finitions. It is the only MACRO of interest to ASN1C because it is the one that specifies the object identifiers and
data that are contained in the MIB.

The version of the MACRO currently supported by this version of ASN1C can be found in the SMI Version 2 RFC
(RFC 2578). The compiler generates code for two of the items specified in this MACRO definition:

1. The ASN.1 typethat is specified using the SYNTAX command, and
2. The assigned OBJECT IDENTIFIER vaue
For an example of the generated code, we can look at the following definition from the UDP MIB:

udpl nDat agr ams OBJECT- TYPE
SYNTAX Count er 32
MAX- ACCESS read-only
STATUS current
DESCRI PTI ON
"The total nunber of UDP datagrams delivered to UDP users."
o= { udp 1}

In this case, a type definition is generated for the SYNTAX element and an Object Identifier value is generated for
the entire item. The name used for the type definition is “<name> SYNTAX” where <name> would be replaced
with the OBJECT-TY PE name (i.e., udplnDatagrams). The name used for the Object Identifier value constant is the
OBJECTTY PE name. So for the above definitions, the following two C# items would be generated:

1. A “udplnDatagrams_SYNTAX.cs’ file. Thiswould contain the udpInDatagrams SYNTAX class definition, and

2. A udplnDatagrams value definition in the_UDP_MIBValues class.

149

	ASN1C
	Table of Contents
	Chapter 1. Overview of ASN1C for C#
	Chapter 2. Using the Compiler
	ASN1C C# Command Line Options
	Compiler Configuration File
	ASN.1 Standard Revisions
	Compiler Error Reporting

	Chapter 3. ASN1C GUI Users Guide
	Quick Start
	Activating a License Key
	Creating a New Project

	Creating a Project
	Creating a New Project
	Editing a Project
	Opening a Project
	Saving a Project

	Editing Schemas
	Creating a New Schema File
	Editing a Schema File
	Deleting a Schema File

	Compiling
	Interface
	Editor
	Project Window
	ASN.1 Tree Window
	Error Log Window
	Project Settings
	Language tab
	Output tab
	Function Generation tab
	Constraints and Debugging tab
	Code Modifications tab
	Language-specific tab
	Build Options tab

	Chapter 4. Generated C# Source Code Overview
	Namespace Specification
	Class Declaration
	Tag Constant
	Public Member Variables
	Constructors
	Decode Method
	Encode Method
	Other Methods
	Inner Classes
	Error Handling

	Chapter 5. ASN.1 Type to C# Class Mappings
	BOOLEAN
	INTEGER
	BIT STRING
	OCTET STRING
	TBCD and BCD Strings
	PLMNidentity

	Character String Types
	ENUMERATED
	NULL
	OBJECT IDENTIFIER
	Using string for OBJECT IDENTIFIER

	RELATIVE-OID
	Using string for RELATIVE-OID

	REAL
	REAL (Base 10)
	SEQUENCE
	Creation of Temporary Types
	OPTIONAL keyword
	DEFAULT keyword
	Extension Elements
	XSD <xsd:all> Type Mapping

	SET
	SEQUENCE OF
	Generation of Temporary Types for SEQUENCE OF Elements
	SEQUENCE OF Type Elements in Other Constructed Types

	SET OF
	CHOICE
	Creation of Temporary Types
	Populating Generated Choice Structures for Encoding
	Accessing the Choice Element Value after Decoding
	XSD <xsd:union> Type Mapping

	Open Type
	<xsd:any> Handling

	External Type
	EmbeddedPDV Type
	Parameterized Types
	Value Specifications
	INTEGER Value Specification
	BOOLEAN Value Specification
	Binary String Value Specification
	Hexadecimal String Value Specification
	Character String Value Specification
	Object Identifier Value Specification
	ENUMERATED Value Specification
	REAL Value Specification
	SEQUENCE Value Specification
	SET Value Specification
	SEQUENCE OF Value Specification
	SET OF Value Specification
	CHOICE Value Specification

	Chapter 6. Generated BER/DER/CER Encode Methods
	Memory-buffer Based Definite Length Encoders
	Generated C# Method Format and Calling Parameters
	Populating Generated Variables for Encoding
	Procedure for Calling Memory-Buffer Based BER Encode Methods
	Reuse of C# Encoding Objects

	Stream-Oriented Indefinite Length Encode Methods
	Generated C# Method Format and Calling Parameters
	Procedure for Calling C# BER Stream-Oriented Encode Methods

	Chapter 7. Generated BER/DER/CER Decode Methods
	Generated C# Method Format and Calling Parameters
	Procedure for Calling C# BER Decode Methods
	Reuse of C# Decoding Objects
	Deferred Decoding and Partial Decoding

	Chapter 8. Generated PER Encode Methods
	Generated C# Method Format and Calling Parameters
	Procedure for Calling C# PER Encode Methods
	Reuse of C# Encoding Objects

	Chapter 9. Generated PER Decode Methods
	Generated C# Method Format and Calling Parameters
	Procedure for Calling C# PER Decode Methods
	Reuse of C# Decoding Objects

	Chapter 10. Generated XML Methods
	Overview
	Differences between OSys-XER and XER (BASIC-XER)
	EXTENDED-XER
	How to Generate Code for EXTENDED-XER
	Supported Instructions and Brief Summary
	Limitations
	Working with generated EXTENDED-XER code

	Generated Encode Methods
	Generated C# Method Format and Calling Parameters
	Procedure for Calling C# XER Encode Methods

	Generated Decode Methods
	Generated Decode Methods when Using the Default Parser (XmlReader)
	Generated Decode Methods when Using the SAX parser

	Chapter 11. Generated OER Encode Methods
	Generated C# Method Format and Calling Parameters
	Procedure for Calling C# OER Encode Methods
	Canonical OER

	Reuse of C# Encoding Objects

	Chapter 12. Generated OER Decode Methods
	Generated C# Method Format and Calling Parameters
	Procedure for Calling C# OER Decode Methods
	Canonical OER

	Reuse of C# Decoding Objects

	Chapter 13. Generated JSON Methods
	Overview
	Generated JSON Encode Methods
	Generated Method Format and Calling Parameters
	Populating Generated Variables for Encoding
	Procedure for Calling JSON Encode Methods
	Reuse of C# Encoding Objects

	Generated JSON Decode Methods
	Generated Method Format and Calling Parameters
	Procedure for Calling C# JSON Decode Methods
	Reuse of C# Decoding Objects

	Chapter 14. Generated MDER Encode Methods
	Generated Method Format and Calling Parameters
	Populating Generated Variables for Encoding
	Procedure for Calling MDER Encode Methods
	Reuse of Encoding Objects

	Chapter 15. Generated MDER Decode Methods
	Generated Method Format and Calling Parameters
	Procedure for Calling MDER Decode Methods
	Reuse of Decoding Objects

	Chapter 16. Table Constraint Processing
	CLASS Specification
	Data Member Generation
	Method and Constructor Generation
	ABSTRACT-SYNTAX class
	TYPE-IDENTIFIER class

	Information Object
	Information Object Set
	Generated Information Object Table Structure
	Simple Form Code Generation
	Table Form Code Generation
	Additional Code Generated for the -tables Option

	Populating OpenType Variables for Encoding
	Decoding Types with Table Constraints

	Chapter 17. Generated Print Methods
	Generated C# Method Format and Calling Parameters

	Chapter 18. Generated Metadata Methods
	IsRequired
	GetValueRange

	Chapter 19. Generated Makefile
	Chapter 20. Event Handler and Exception Handler Interfaces
	Event Handlers
	How Event Handlers Work
	How to Use Event Handlers
	Example 1: A Formatted Print Handler
	Example 2: An XML Converter Class

	Exception Handlers

	Chapter 21. IMPORT/EXPORT of Types
	Chapter 22. Compact Code Generation
	Chapter 23. ASN1C X.208 Support
	ROSE OPERATION and ERROR
	SNMP OBJECT-TYPE

