objective
SYSTEMS, INC.

ASN1C
ASN.1 Compiler User's Guide for Python

Version 7.8
Objective Systems, Inc.
December 2023

ASN1C: ASN.1 Compiler User's Guide for Python
Copyright © 1997-2023 Objective Systems, Inc.
License. The software described in this document is furnished under alicense agreement and may be used only in

accordance with the terms of this agreement. This document may be distributed in any form, electronic or otherwise,
provided that it is distributed in its entirety with the copyright and this notice intact.

Author's Contact Information. Comments, suggestions, and inquiries regarding ASN1C or this document may
be sent by electronic mail to <i nf o@bj - sys. conp.

Table of Contents

1. Overview Of ASNLC fOr PYhONuiiiiiieii ettt e e e e ee e eeees 1
2. ASNIC Command Line INLEfACE (CLI) ...uuiiiiiieeiiiii ettt e e e enaans 2
RUNNING ASNILC ..ottt et e et e et et e et e e e e e et n e e e eab e e eenanns 2
ASNI1C Python Command Ling OPLIONSc.uuiiiiiiiieiiite ettt e e 2
Compiler ConfigUIation FilE ... et ettt e e et e et e e e ena e eeens 5
ASN.L SEANAIA REVISIONSuiiiiie ettt ettt et e et e et et eeera s 8
ComMPIlEr ErTOr REPOITING ...eeveueteeii ettt ettt ettt et e e e et et et e et et e e e et e e e eaa s 9

3. ASNIC GUI USEIS GUITE ... eeeeetieeeeet ettt ettt ettt ettt e et e et e e e aaa e e e enan s 10
L@ Lot - P 10
ACHVALING 8 LICENSE KEY ..ottt et e e 10

Creating @ NEBW PrOJECEu ittt ettt e et e e e et e e e enb e eee 12

Crealing @ PIOJECTvuuei ittt ettt e et et et e e et e e e e aee 14
Creating @ NEBW PrOJECEu ittt ettt e et e e e et e e e enb e eee 14

EdItiNG @ PrOJECE .. .ceieieieeiit et 15

OPENING @ PIOJECT ..ottt ettt ettt e ettt e ettt e et e et e e e eab e e eenbaaaaees 15

SAVING @ PIOJECE .. .een ettt ettt et 15

EdItiNG SChEMES ..ot ettt e e ettt e e et et e e e e tb e e e enb e aeee 15
Creating a New SChema Filei i 16

Editing & SChemMa Fileo 16

Deleting @ SChema File e 17

1600]07] 11 112 o [O UP PP UP PPN 17
L1 g = o PO UOP PPN 17
o) (o] ST SPP PP RPPPTRP 18

PrOJECE WINGOW ...ttt ettt e et e ettt e e et e e e e eaa s 19

ASNLL TTEE WINUOW ..ttt ettt ettt ettt e et e et et e et et e e e ena e e e eaanas 22

ErrOr LOG WINOOW ... ittt ettt ettt ettt e e et et e e et et e e e eeba e eeenes 22

PrOJECT SEILINGS ...t eeti ettt ettt ettt e e e e 23

4. Generated Python SOUICE COUEuuiiiiii ettt et e e e e e e 34
General Form of a Generated Python SOUrCE Filec.uuiiiiiiiiiiiii e 34
IMPOIT SEBEEMENTS ... eeee ettt ettt et e et e et et et et et et e e ea e e e re e e e e eenns 34
SIMPle Value DEFINITIONS ...t e e e e 34
ClasS DEFINITIONSuuiiiiti ettt ettt e ettt e e et et e e et et r e et e et e e eeabareeeenbnaaeees 34
Complex Value DEfINITIONSc.uuiiiii ettt e ettt e e e et e e e e et e e eentnaaeees 35

5. ASN.1 Type to Python Class MaDPINGS ... ceeuuuueeeitiaetettt ettt e et e e et e e e eebe e e e eata e e eeata e eeenta e eeenes 36
BIT STRING .ottt ittt ettt o e oo et et e et bbb e e e e e e et e eebbb et e e e aeeeesbbban e e e aeaaaeennnes 36

BIT STRINGS With NAamMEd DTSuiiiiiiei e 36
BOOLEAN .ttt e e oottt e e e e e e et bt e e e e e e et e bbb e e e e aeeeanaaas 37
INTEGER ...ttt oottt e ettt oo 4o e ettt ettt oo e e e et e e e et b b e e e e e e eeeeebbaa e e e aeaaaeennnes 38
ENUMERATED ...ttt ettt e ettt e e e e ettt e bbb e e e e e e e e e ettt e e e e e e eeeennbnanes 38
OCTET STRING ...ttt e ettt e e e e et e e ettt bt e e e e e e e et abbbba e e e e e e aeeeesbanaans 38
O = o S 1o [Y o= TSP ST PP PPPPTT 39

BT SS aTaTo T Y o= PP UPPPTTRPPPIN 40
RE A L ettt et e e e et e bt e e e et e e et e b e e e e e e etnbaan e aaaas 40
OBJECT IDENTIFIER and RELATIVE-OIDcoouuiiiiiiiiiieieei ettt 40

6. Generated BER/DER ENCOUE MEINOGSccovvtiiieiiieieet ettt eenaens 42
Run-time and Generated Python Encode MethodSccouuiiiiiiiiiiii e 42
Populating Generated Variables for ENCOTINGccouvuuiiiiiiiieiiiiie e 43
Procedure for Calling Python BER ENcode MethOdSuiiiiiiiiiiiiiiecei et 43

7. Generated BER/DER Decode MEtOUScooiuiiiiiiiiieeeei et 46
Run-time and Generated Python Decode MEthOOSviiiiiiiiiiii e 46
Procedure for Calling Python BER Decode MethOdSc.uuiiiiiiiiiiiiiii e 47

ASNIC

8. Generated JER (JSON) DeCode MENOASccovuiiiii i e e e e e e e e eaaees 49
Run-time and Generated Python Decode MethodSooouiiiiiiiiiii e 49
Procedure for Calling Python JER Decode MethOdSc.uiiiiiiiiiiiicii e 50

9. Generated JER (JSON) ENCOOE MENOAScovuiiiiiiiiii e e e e e e e e aens 52
Run-time and Generated Python Encode Methodsoeiiiiiiiiicii e e 52
Procedure for Calling Python JER ENCOOEuiiiniiiiiiiii e e e e e e e eaas 53

10. Generated SAMPIE PrOQraIMS ccuuiiii et eee e e et e e et e e e e e et e e et e e et e e et e e et e e st aeeaaeaaaneeeens 55

11. Generated Print MEINOOSuuiiieii e e et e e e et e e e e e e et s 56
Generated Python print_value Method Format and Calling Parameterscocouiviviiiiiiiiieiiii e 56
Generated Python __ str Method Format and Calling Parametersc.oovevvveiiiiieiiineeie e 57

12. Generated Compare MENOOScoouiiiii e e e e 60

13. Generated COopy MEINOASciuiiiiiiie et e e e e e e e e e et e e et e eaa s 61

Chapter 1. Overview of ASN1C for Python

The ASN1C code generation tool transates an Abstract Syntax Notation 1 (ASN.1) or XML Schema Definitions
(XSD) source file into computer language source files that allow typed data to be encoded/decoded. This release of
ASNI1C includes options to generate code in the following languages: C, C++, C#, Java, Python, or Go. This manual
discusses the Python code generation capabilities. The following manuals discuss the other language code generation
capabilities:

e ASNI1C C/C++ Compiler User's Manual : C/C++ code generation
* ASN1C C# Compiler User's Manual : C# code generation

» ASNI1C Java Compiler User's Manual : Java code generation

» ASN1C Go Compiler User's Manual : Go code generation

Each ASN.1 module that is encountered in an ASN.1 schema source file results in the generation of an equivalent
Python source file with the same name as the modul e with hyphens replaced with underscores and with extension '.py".

There is also a set of classes that form the run-time component of the Python package. These classes provide the
primitive component building blocks that are assembled by the compiler to encode/decode complex structures. They
also provide support for managing message buffers that hold the encoded message components.

This release of the ASN1C Compiler for Python works with the version of ASN.1 specified in ITU-T international
standards X.680 through X.683. It generates code for encoding/decoding data in accordance with the following en-
coding rules:

 Basic Encoding Rules (BER) and Distinguished Encoding Rules (DER) as published in the ITU-T X.690 and 1SO/
|EC 8825-1 standards.

» JSON Encoding Rules (JER) as published in the ITU-T X.697 and | SO/IEC 8825-8:2018 standards.

ASNI1C for Pythonis capable of parsing all ASN.1 syntax asdefined in the standards. It is capable of parsing advanced
syntax including Information Object Specifications as defined in the ITU-T X.681 standard as well as Parameterized
Typesasdefinedin ITU-T X.683.

Chapter 2. ASN1C Command Line Interface
(CLI)

Running ASN1C

The ASN1C compiler distribution contains command-line compiler executables as well as a graphical user interface
(GUI) wizard that can aid in the specification of compiler options. Please refer to the ASN1C C/C++ Compiler User's
Manual for instructions on how to run the compiler. The remaining sections describe options and configuration items
specific to the Python version.

ASN1C Python Command Line Options

The following table shows a summary of the command line options that have meaning when Python code generation
is selected:

Option Argument Description

-alow-ambig-tags This option suppresses the check that
is done for ambiguous tags within a
SEQUENCE or SET type within a
specification. Special code is generat-
ed for the decoder that assigns values
to ambiguous elements within a SET
in much the same way as would be
done if the elements were declared to
beina SEQUENCE.

-asnstd X680 This option selects the version
X680-2021 of ASN.1 syntax to be parsed.
x680-2015 ‘x680" (the default) refers to mod-
x680-2008 ern ASN.1 as specified in the ITU-T
mixed X.680-X.690 series of standards. Re-
x208 fer to the section called “ASN.1 Stan-

dard Revisions’ for moreinformation.

-ber None Generate functionsthat implement the
Basic Encoding Rules (BER) as spec-
ified in the ASN.1 standards.

-compare None Generate a Python equality compari-
son method (__eq) in each generat-
ed class.

-config <filename> Thisoptionisusedto specify thename

of a file containing configuration in-
formation for the source file being
parsed. A full discussion of the con-
tentsof aconfigurationfileisprovided
in the section called “Compiler Con-
figuration File".

-copy None Generate copy_value methods in all
non-trivial classes to produce cloned
deep-copy of an object instance.

ASN1C Command Line Interface (CLI)

Option

Argument

Description

-depends

None

Generate Python sourcefiles that con-
tain only the productions in the main
file being compiled and items those
productions depend on from IMPORT
files.

-der

None

Generate functionsthat implement the
Distinguished Encoding Rules (DER)
as specified in the ASN.1 standards.

-genbuild

[<filename>]

This option is used to generate a build
script for invoking the compiler with
the set of command-line options giv-
en in the command. If no file name
is specified, the file will be named
build.bat on Windows or build.sh on
Linux/Mac.

-genPrint
-print

None

Generate print methods to print object
contents. For Python, this includes an
__str___method to get a string repre-
sentation of the object as well as a
print_value to print the string repre-
sentation to stdout.

-genTest

None

Generatetest to populateaPDU object
with random test data. This code will
be embedded in the body of agenerat-
ed writer program; thus the option on-
ly results in code being generated if -
writer is also specified.

<directory>

This option is used to specify a di-
rectory that the compiler will search
for ASN.1 source files for IMPORT
items. Multiple I qualifiers can be
used to specify multiple directoriesto
search.

-json or -jer

None

Generate encode/decode functions
that implement the Javascript Ob-
ject Notation (JSON) Encoding Rules
(JER) asspecified inthe X.697 ASN.1
standard. (Note: -jer+isnolonger sup-
ported. Similar functiondity is now
standard JER.)

None

Suppress generation of code to check
constraints.

-list

None

Generate listing. This will dump the
source code to the standard output de-
vice asit is parsed. This can be useful
for finding parse errors.

-noaccomment

None

This option suppresses the generation
of the comment that shows the asnlc

ASN1C Command Line Interface (CLI)

Option

Argument

Description

command that was used to generate
the code.

-nodecode

None

Suppress generation of decode func-
tions.

-noencode

None

Suppresses generation of encode func-
tions.

-nolndefLen

None

Omit indefinite length tests in gen-
erated BER decode functions. These
tests result in the generation of a fair
amount of code. If you know that your
application only uses definite length
encoding, this option can result in a
smaller code base size. Note that by
definition it is enabled for DER code
generations since these encoding rules
do not use indefinite lengths.

-noOpenExt

None

Suppress the generation of open ex-
tension elements in constructs that
contain extensibility markers. The
purpose of theelement isto collect any
unknown itemsin amessage. If an ap-
plication does not care about these un-
known items, it can use this option to
reduce the size of the generated code
and increase performance.

-noPLMN

None

If not specified, if the ASN.1 con-
tains a production named PL M Niden-
tity (any case), that production will
be treated asan OCTET STRING, re-
gardless of how it may be defined
in the ASN.1. But if -noPLMN is
specified, this special recognition of
PLMNidentity will be disabled, and it
will be treated according to its defini-
tion in the ASN.1 (frequently TBCD-
STRING, athough in most cases that
isincorrect).

-noUniqueNames

None

Turn off the capability to automat-
icaly generate unique names to re-
solve name collisions in the generat-
ed code. Name collisions can occur,
for example, if two modules are be-
ing compiled that contain a produc-
tion with the same name. A unique
name is generated by prepending the
module name to one of the produc-
tions to form a name of the form
<module>_<name>.

ASN1C Command Line Interface (CLI)

Option Argument Description

Note that name collisions can aso be
manually resolved by using the type-
Prefix, enumPrefix, and valuePrefix
configuration items (see the Compil-
er Configuration File section for more

details)

-0 <directory> Specify the name of a directory to
which all of the generated fileswill be
written.

-pdu <typeName> Designate given type name to be a

Protocol Definition Unit (PDU) type.
By default, PDU types are determined
to be types that are not referenced by
any other types within amodule. This
option allowsthat behavior to be over-
ridden. Note that for Python, the on-
ly effect this has is to cause this type
to be used in generated reader/writer
programs.

-reader None Generate a sample reader program to
decode data.

-shortnames None Change the names generated by com-
piler for embedded typesin construct-
ed types.

-tables None Generate additional code for the han-
dling of table constraints as defined in
the X.682 standard.

-warnings None Output information on compiler gen-
erated warnings.

-writer None Generate a sample writer program to
encode data.

Compiler Configuration File

In addition to command line options, a configuration file can be used to specify compiler options. These options can
be applied not only globally but also to specificmodules and productions.

The basic structure of a configuration file is described in the C/C++ User's Guide. Configurations items that are ap-
plicable to Python code generation are described in the following sections.

Global Level

These attributes can be applied at the global level by including them within the <asnlconf i g> section:

Name Values Description

<includedir></includedir> |<Include directory> This configuration item is used to specify a directory that
will be searched for IMPORT files. It is equivalent to the
-I command-line option.

ASN1C Command Line Interface (CLI)

Module Level

These attributes can be applied at the module level by including them within a <module> section:

Name

Values

Description

<name> </name>

module name

This attribute identifies the module to
which this section applies. Either this
or the <oid> element/attribute is re-
quired.

<oid>

module OID (object identifier)

Thisattribute providesfor an alternate
form of module identification for the
case when module nameis not unique.
For example, a given ASN.1 module
may have multiple versions. A unique
version of the module can be identi-
fied using the OID value.

<include
values="names'/>

types="names"

ASN.1 type or values names are spec-
ified as an attribute list

Thisitem allows alist of ASN.1 types
and/or values to be included in the
generated code. By default, the com-
piler generates code for al types and
values within a specification. This al-
lows the user to reduce the size of the
generated code base by selecting only
a subset of the types/values in a spec-
ification for compilation.

Notethat if atype or valueisincluded
that has dependent types or values (for
example, the element types in a SE-
QUENCE, SET, or CHOICE), dl of
the dependent types will be automati-
cally included as well.

<exclude
values="names'/>

types="names"

ASN.1 type or values names are spec-
ified as an attribute list

Thisitem allowsalist of ASN.1 types
and/or values to be excluded from the
generated code. By default, the com-
piler generates code for al types and
values within a specification. This is
generally not as useful as the include
directive because most typesin aspec-
ification arereferenced by other types.
If an attempt is made to exclude atype
or value referenced by another item,
the directive will be ignored.

<sourceFile>
</sourceFile>

source file name

Indicates the given module is con-
tained within the given ASN.1 source
file. Thisis used on IMPORTSs to in-
struct the compiler where to look for
imported definitions.

<vauePrefix> </valuePrefix>

prefix text

This is used to specify a prefix that
will be applied to all generated value
constantswithinamodule. Thiscan be
used to prevent name clashes if mul-

ASN1C Command Line Interface (CLI)

Name

Values

Description

tiple modules are involved that use a
common name for two or more differ-
ent value declarations.

Production L evel

These attributes can be applied at the production level by including them within a <production> section:

Name Values Description
<name> production name Thisattributeidentifiesthe production
</name> (type) to which this section applies.

The name may also be specified as an
attribute. In either case, it isrequired.

<isPLMNidentity/>

n/a

This flag identifies the production
as a PLMNidentity. Any production
so identified will be treated as an
OCTET STRING, regardless of how
the production might be defined in the
ASN.1.

<isTBCDString/>

n/a

This item is used to indicate that this
production is to be encoded and de-
coded as a telephony binary coded
string (TBCD). Thisistypeisnot part
of the ASN.1 standards but is awide-
ly used encoding format in telephony
applications.

<typePrefix> </typePrefix>

prefix text

This is used to specify a prefix that
will be applied to all generated Python
class names. This can be used to pre-
vent name clashesif multiple modules
areinvolved in acompilation and they
all contain common names.

Element Level

These attributes can be applied at the element level by including them within an <element> section:

Name Values Description

<name> element name This element identifies the ele

</name> ment within a SEQUENCE, SET, or
CHOICE construct to which this sec-
tion applies. It may also be specified
as an attribute. In either casg, it isre-
quired.

<isOpenType/> n/a This flag variable specifies that this

element will be decoded as an open
type (i.e. skipped). Refer to the sec-
tion on deferred decoding and partial
decoding for further information. Note
that thisvariable can only be used with
BER, CER, or DER encoding rules.

ASN1C Command Line Interface (CLI)

Name Values Description

<notUsed/> n/a Thisflag variable specifiesthat thisel-
ement will not be used at al in the
generated code. It can only be ap-
plied to optional elements within a
SEQUENCE or SET, or to elements
within a CHOICE. Its purpose is for
production of more compact code by
allowing users to configure out items
that are of no interest to them.

<notUsedDecode/> n‘a Similar to the notUsed flag, except
that rather than indicating the element
is not used at all, it indicates the ele-
ment is not used for decoding (i.e. it
is still used for encoding). This can
be useful for reducing the amount of
generated code, when used in con-
juction with a production level <in-
clude/> (which see). It signals that the
element's type does not require a de-
code function for the sake of this ele-
ment.

<skip/> n‘a Deprecated. Thisis now equivalent to
<notUsedDecode/>

ASN.1 Standard Revisions

The - asnst d option alows you to choose the revision of the ASN.1 standards you want to generate code for. This
section explains the differences for these options.

-asnstd x680
» Thisisthe default option.

» Thisoption indicates ASN1C should follow the latest revision of the X.680 and X.690 series that is supported by
the tool.

-asnstd x680-2021
» Follows the 2021 revision of the X.680/X.690 series.

* PER encoding of BIT STRINGs with contents constraints: The BIT STRING is padded to a multiple of 8 bits for
aligned PER only.

» JER encoding of BIT STRING and OCTET STRING with contents constraints: an encoder's option using a JSON
object with a'containing' key was added in this revision. The encoder will use this encoder's option and the decoder
will decode values encoded using either option.

-asnstd x680-2015
» Followsthe 2015 revision of the X.680/X.690 series.

» PER encoding of BIT STRINGs with contents constraints: There is no padding of the BIT STRING value.

ASN1C Command Line Interface (CLI)

-asnstd x680-2008
» Follows the 2008 revision of the X.680/X.690 series.

* PER encoding of BIT STRINGs with contents constraints: The BIT STRING is padded to a multiple of 8 bits for
both aligned and unaligned PER.

-asnstd mixed

 Used when source files contain modules with both X.208- and X.680-based syntax.

-asnstd x208

* This option supports the deprecated X.208 and X.209 standards.

» Allows use of type 'ANY' (not part of X.680).

 Allows unnamed fields in SEQUENCE, SET, and CHOICE constructs (not allowed by X.680).

» Allows use of ROSE OPERATION and ERROR macros and SNMP OBJECTTY PE macros (macros are not a
feature of X.680).

Compiler Error Reporting

Errors that can occur when generating source code from an ASN.1 source specification take two forms: syntax errors
and semantics errors.

Syntax errors are errors in the ASN.1 source specification itself. These occur when the rules specified in the ASN.1
grammar are not followed. ASN1C will flag these types of errors with the error message 'Syntax Error' and abort
compilation on the source file. The offending line number will be provided. The user can re-run the compilation with
the'-I' flag specified to see thelineslisted asthey are parsed. This can be quite helpful in tracking down asyntax error.

The most common types of syntax errors are as follows:

« Invalid caseonidentifiers: modul e name must begin with an uppercase | etter, productions (types) must begin with an
uppercase |etter, and element names within constructors (SEQUENCE, SET, CHOICE) must begin with lowercase
letters.

* Elements within constructors not properly delimited with commas: either a comma is omitted at the end of an
element declaration, or an extracommais added at the end of an element declaration before the closing brace.

* Invalid special characters: only letters, numbers, and the hyphen (-) character are allowed. Programmers tend to
like to use the underscore character () in identifiers. Thisis not allowed in ASN.1. Conversely, Python does not
alow hyphensin identifiers. To get around this problem, ASN1C converts all hyphensin an ASN.1 specification
to underscore charactersin the generated code.

Semantics errors occur on the compiler back-end as the code is being generated. In this case, parsing was successful,
but the compiler does not know how to generate the code. These errors are flagged by embedding error messages
directly in the generated code. The error messages always begin with an identifier with the prefix ‘% ASN-',. A search
can be done for this string in order to find the locations of the errors. A single error message is output to stderr after
compilation on the unit is complete to indicate error conditions exist.

Chapter 3. ASN1C GUI Users Guide
Quick Start

This section demonstrates running ACGUI, activating alicense key, creating a new ASN.1 schema, and compiling it
to C for BER data. The processis similar for other languages.

Activating a License Key

First, start ACGUI. The Enter License Key window may be displayed to activate a license key.

D ASN.1 Editor Settings X
License l General Fonts/Colors

License Type
* Key (File

License Key:

Deactivate

[~ Check-in license on exit

License file not found

If you are using a proxy server, enter it below (myproxyhost:8765):

HTTP_PROXY:

OK Cancel

If the Enter License Key window is displayed and it is not showing a current license key, right-click in the text box
and paste the accurate license key. Then click Activate to unlock ASN1C.

10

ASN1C GUI Users Guide

In some cases, the Enter License Key window is displayed and showing acurrent license key. In these cases, itislikely
that the key being shown is expired. First deactivate the current key by clicking Deactivate. Then, right-click in the

text box and paste the current license key, and click Activate to unlock ASN1C.

If an osydlic.txt license file is being used instead of a key, and the osydlic.txt isin alocation where the GUI does not

look, click Import to find the file and use it to unlock ASN1C.

If Skip is clicked within the Enter License Key window, the features of the GUI can be explored, but code cannot

be generated.

If anew license key must be activated and the current one is till valid (for example, if ASN1C is purchased before
the evaluation key expires), the existing license must be deactivated first. This deactivation can be done from the GUI
by navigating to Tools > Options and then selecting the License tab. The ASN.1 Editor Settings window is displayed.

ASN.1 Editor Settings X
d 9

License w General Fonts/Colors

License Type

& Key C File

License Key:

PzeTKOWBtWKSOuclbDenMP2vabG1d +vuMwiHdxIUIBwPvjc3IJmMNiwE
xQG2EZxziE4uVUPIZgcYkf3z)tS + MQdLFIQ+gd GIFPCAKFrC 5 80WxRX
dWfuplom+ORLgfzZWWFoSD9cmAG+eg=

Activate Deactivate

[v Check-in license on exit

If you are using a proxy server, enter it below (myproxyhost:8765):

HTTP_PROXY:

Restore Defaults QK Cancel

Click Deactivate to deactivate the existing license. Then click OK. Next, navigate to Tools > Options > License tab

again to activate the new key.

11

ASN1C GUI Users Guide

The "Check-in license on exit" check box is used to indicate that the license should be immediately returned to the
license pool upon exit making it available for other users on different machines. If not checked, the machine on which
it is being used will continue to hold it until it times out (typically in 24 hours). If you will only be using ASN1C on
a single machine most of the time, it is better to keep it unchecked as it will lead to faster startups since the Internet
check will not need to be done each time.

The HTTP PROXY box can be used if you are using ASN1C on a machine that requires I nternet requests go through
aproxy server.

Creating a New Project

Oncethe ASN1C program has been activated, anew project can be created to store all of the settings. To do this, select
Project > New Project from the menu. The ASN1C Settings window is displayed.

D ASNIC Settings X
9

Language] Output I Eunction Generation | Constraints and Debugging | Code Modifications |
Application Language Type
* None LG " Cas C Cc# Java Python Go

I~ BEF ™ CER ™ DEf I~ PER ™ APER ¥ UPES " ISON & XEF ™ XML I~ AVN I QFR [~ COE

ASN.1 Standard
® X 680-senes - latest, in-force ASN.1 standards X.680-series - 2008 ASN.1 standards
X.680-senes - 2021 ASN.1 standards X.208 - earlier, withdrawn standard

" X.6B0-series - 2015 ASN.1 standards

Additional Translations

™ Generate HTML files for input ASN.1 I™ Generate equivalent XML schema [~ Pretty-print ASN.1

Input Options

[Perform a lax syntax check I~ Allow ambiguous tags

0K | Cancel

The Language tab is displayed by default. In the Application Language Type section, select C. In the Encoding Rules
section, select BER. Finally, on the Output tab, in the Output Directory text box, enter or browse to the location
where the generated files should be saved. When finished defining the project settings, click OK. These settings can
be changed at any time by selecting Project > Project Settings from the menu.

Next, anew schemafileis created for the project. Click New in thetoolbar or navigate to File > New SchemaFile. A
dialog box is displayed to define a name for the new file. Once entered, the file is added to the project window under
the "Schema/ASN.1 files' heading and its empty contents are shown in the editor.

12

ASN1C GUI Users Guide

File Edit Project Tools Help
O x vV @ »
%l
New Open Remove Savefle Validate compie Previous Error MextError
Project B [test.asn* B | | SN Tree B x
Untitled || b tdodule DEFIMITIONS 1= BEGIN
4 Schema/ASN files 2
testasn” JEND

Include Directories

Configuration files

: Generated ltems
Error Log 8 X
File Line Column Message

The schema is then written between the "DEFINITIONS ::= BEGIN" and "END" statements in the file. For this
exampl e, the following can be entered:

MySequence ::= SEQUENCE ({
i ngredi ent PrintableString,
count | NTEGER,
units PrintableString

Once the schemais created, click Validate to perform a check for errors.
Note

If the new schema file has not yet been saved, ACGUI asks if it should be. Once saved, ACGUI validates
thefile.

If the schema has errors, they are displayed in the log at the bottom of the ACGUI window.

Once the project has been configured, click Compile to generate code according to the project settings. If compliation
issuccessful, alist of generated files, sorted according to the selected language, is displayed under the Generated Items
heading in the Project pane. If compilation is not successful, any errors are displayed in the Error Log.

13

ASN1C GUI Users Guide

File Edit Project Tools Help
B x v @
Q =] 5 @ 8
New Open Remove Savefie Validate compile PreviousError NextError
Project B[test.asn 6 ‘ | s Tree & x
C/work/asnlc/testacpral || q hyhiodule DEFINITIONS := BEGIN
4 Schema/ASM1 files 2 4t MyModule
test.asn 3 MySequence := SEQUENCE { 4 IE Types
Include Directories 4 ingredient PrintableString, 4 B MySequence
Configuration files 5 CUunIINTEGER . ® ingredient
4 Generated Items 6 units PrintableString & count
4 C/Cs files ! * units
MyMadule.c 8
MyModuleh BEMND
MyModuleDec.c
MyModuleEnc.c
rtkey.h
C# files
Java files
KSD files
Text Browser
Error Log J X
File Line Column Message
Q1 Parsing ASN.1 definitions..
3 2 MyModuleh Writing C type definitions to file MyModule.h.
@ 3 MyModuleEnc.c Writing C encode functions to file MyModuleEnc.c.
Q 4 MyModuleDec.c Writing C decode functions to file MyModuleDec.c.
3 5 MyModule Writing C global variables to file MyMedule.c.
Q6 Code was successfully generated in C:/work/asnlc

At thistime, project settings can be changed and schema files can be edited as needed.

Creating a Project

Since there are alarge number of options available in the code generation process, ACGUI allows settings to be saved
in project files for reuse. Project files can be created, opened, and saved from the Project menu. If no project file is
explicitly used, adummy project isimplicitly created and can be saved to afile at alater time.

Creating a New Project

To create anew project file, select Project > New Project from the menu. The ASN1C Settings window is displayed.

The ASN1C Settings window contains standard tabs for Language, Output, Function Generation, Constraints and
Debugging, and Code Moadifications. Additional tabs are loaded once an Application Language Type is selected on
the Language tab.

Once all project settings have been defined, click OK.
Note

Details regarding the tabs and contents within the ASN1C Settings window can be found in the Interface
topic of this guide.

14

ASN1C GUI Users Guide

Editing a Project
A project's settings can be changed at any time by navigating to Project > Project Settings.
Opening a Project

To open an existing project, navigate to Project > Open Project. Usethe File Explorer window to navigateto the desired
project and click Open. Recent projects can be accessed by navigating to Project > Recent projects and selecting the
desired project from the list.

Once opened, project assets, such as ASN.1 schemas and generated source files, are visible in the Project pane.

Saving a Project

To save a project, havigate to Project > Save Project or Project > Save Project As.

Editing Schemas

The central area of the ACGUI window is dedicated to editing ASN.1 schema definition files.

Note

Additional information on the schema Editor can be found in the Interface topic of this guide.

15

ASN1C GUI Users Guide

UsefulDefinitions.asn | InformationFramework. asn | ACSE-1.asn |
'I F
2 UsetulDefintions {joint-iso-itu-t ds(b) module (1) usefulDefintians(0) 3}
3 DEFINITIONS =
4 BEGIN

m

[et W P |

9
10
11 1D = OBJECT IDENTIFIER
12
13 ds 1D 2= {joint-iso-itu-t ds(5)}
14
15
16 module D :={ds 1}
17
18 zerviceElement 1D 2= {ds 2}
19
20 applicationContext 1D 2= {ds 3}
21
22 attribute Type ID = {ds 4}
23
24 attributeSyntax 1D = {ds 5t
25
26 ohjectClass ID = {ds 6}
27
28
29 algorithem (D = {ds 8}
30
31 ahstractSyntax D o= {ds 9}

AR dsalneratinnalAttribote M =

Text Browser

Creating a New Schema File

To create anew schemafile, click New inthetoolbar or navigateto File > New SchemalFile. A tab titled 'Untitledl.asn’
isdisplayed in the central editing area of the GUI.

Define the schema by copy/pasting text or by manually entering text between the "DEFINITIONS ::= BEGIN" and
"END" statements in the file. When finished, click Save file in the toolbar or navigate to File > Save file or File >
Save file as. Click Validate to check for proper syntax and to confirm that no errors are present. Upon validation, a
success or failure messageis returned in the Error Log.

Editing a Schema File

To open an existing schemafile for edit, click Open in the toolbar or navigate to File > Open File. Thefileis added to
the project and is displayed as atab in the central editing area. A schemafilethat is already included in a project can
be opened by selecting the file name from the list of Schema/ASN.1 filesin the Project pane.

At any point during editing, the schema can be saved and validated.

16

ASN1C GUI Users Guide

Deleting a Schema File

To remove aschemafile from aproject, right-click on the file name from the list of Schema/ASN.1 filesin the Project
pane and select Remove. Or, simply select the file within the Schema/ASN.1 fileslist and click Removein the toolbar.

Compiling
Onceaproject iscreated and schemas are added, the schemas may be compiled to generate source code and related files.

Note

A target language must be selected for the project prior to compiling. To set the target language, navigate to
Project > Project Settings > Output tab, and make a selection from the Application Language Type section.

Click Compile from the toolbar or navigate to Tools > Compile. Upon compilation, a success or failure message is
returned in the Error Log.

Note

Upon clicking Compile, if any files have unsaved changes, a dialog box is displayed to prompt the user to
savethefiles.

After compilation, changes can continue to be made to the schema and to the project settings. Recompilation can be
done as needed.

On Mac systems if Go code is being generated, sometimes an error message is displayed saying the "go mod init"
command failed. Thiserror message is caused by the location of the "go" command not being inthe PATH that isused

for GUI applications (which can be different from the PATH used for command shell sessions). This problem can be
fixed by executing the following command (as an example) from a Termina session on the Mac and then rebooting:

sudo launchct!l config user path /usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbhin

For this example /usr/local/bin is the location of the "go" command, and the other directories are the other locations
that need to be in the PATH. The command will need to be adjusted accordingly for specific Mac systems.

Interface

The ACGUI interface is comprised of five parts: Editor, Project window, ASN.1 Tree window, Error Log window,
and Project Settings.

17

ASN1C GUI Users Guide

Project

File Edit Project Tools Help

O x B ¢

New Open Remove Savefle Validate compile Previous Error Next Error

E €« »

2

4 Schema/ASN files
ACSE-Lasn
InformationFramewerk.asn
UsefulDefinitions.asn

Include Directories
Configuration files
> Generated ltems

Untitled

usefulbefinitions.asn) | informatonFramework.asn £ | acse-tasn [|

1

2 UsefulDefinitions {joint-iso-itu-t ds(5) module(l) usefulDefinitions(0) 3}

3 DEFINITIONS 1=
4 BEGIN

5
B
7
8
9

111D = OBJECT IDENTIFIER
13 ds 1D == {jointiso-itu-t ds(5)}
14

18
16 module 1D = {ds 1}
17

18 serviceElementID ;= {ds 2}
19

20 applicationContext 1D = {ds 3}
21

22 attributeType 1D 2= {ds 4}
23

24 attrilbiuteSyntax 1D = {ds 5}
25

26 ohjectClass D= {ds 6}

27

28

28 algorithrn 1D = {ds 8}

30

31 ahstractSyntax D = {ds 9}
32

33

34
AR dealneratinnalAtrinute I =

ASN.1Tree

> T ACSE-L

4 % InformationFramework
> & Types
4 % Values

id-at-objectClass

> H: Information objects
> H: Information object sets
» 1 UsefulDefinitions

Text | Browser

Error Log

id-at-aliasedEntryName

id-mr-distinguishedNameMa...
id-mr-objectldentifierMatch
» % Information Object Classes

File Line Column Message

Q1 Parsing ASN.1 definitions.
@2 Validation was successful

Editor

The central part of the ACGUI window is the schema Editor. From here, schema files can be viewed and edited.

To begin editing an ASN.1 schema, create or open aschemafile. A new schemafile can be opened by clicking New in
the toolbar or by navigating to File > New Schema File. An existing schemafile can be accessed via the Open button
in the toolbar or navigating to File > Open File. The fileis added to the current project and shown in the Editor.

18

ASN1C GUI Users Guide

UsefulDefinitions.asn | InformationFramework. asn | ACSE-1.asn |
'I F
2 UsetulDefintions {joint-iso-itu-t ds(b) module (1) usefulDefintians(0) 3}
3 DEFINITIONS =
4 BEGIN

m

[et W P |

9
10
11 1D = OBJECT IDENTIFIER
12
13 ds 1D 2= {joint-iso-itu-t ds(5)}
14
15
16 module D :={ds 1}
17
18 zerviceElement 1D 2= {ds 2}
19
20 applicationContext 1D 2= {ds 3}
21
22 attribute Type ID = {ds 4}
23
24 attributeSyntax 1D = {ds 5t
25
26 ohjectClass ID = {ds 6}
27
28
29 algorithem (D = {ds 8}
30
31 ahstractSyntax D o= {ds 9}

AR dsalneratinnalAttribote M =

Text Browser

The Editor window is also used to display a schema browser for navigating within a validated schema. To display the
browser after validating a schema, click on an item in the ASN.1 Tree window. The browser displays a hyperlinked
version of the schema, centered on the definition of the selected item. Click the names of other defined types in the
browser to show their definitions.

By default, schema documents are displayed as tabs in the Editor. The Text and Browser tabs at the bottom of the
window are for schema editing and hyperlinked schema browsing, respectively. Schemafiles currently open for edit
are displayed as tabs at the top of the Text tab.

Project Window

The Project window allows the user to interact with project assets, and contains the following components. Schema/
ASN.1 files, Include Directories, Configuration files and Generated Items.

19

ASN1C GUI Users Guide

Project &

Untitled

4 Schema/ASM. files
ACSE-1.asn
InformationFramework.asn
UzefulDefinitions.asn

Include Directories
Configuration files
4 (Generated ltems
+ CfC++ files
CZ files
Java files
K5D files

The Project window contains the following sections:
Schema/ASN.1 files This section lists the files that contain the current project's ASN.1 schema definitions.

Include Directories This section lists the directories containing auxiliary ASN.1 schemafiles. The current
project's schemamay import definitions from modul esdefined in an included directory.

Configuration file This section liststhe ASN1C compiler configuration file currently in use.
Generated Items This section lists the files generated by the compiler, separated by target language.

Click onaschemaor configuration filein the Project window to open that filein the Editor. Right-click on any schema
file, include directory, or configuration file to easily add another or remove that particular asset from the project.

Right-clicking on the Schema/ASN.1 files heading also displays options for 'Find in Files and 'Replace in Files.'
Selecting 'Find in Files displaysthe Find in Files window, which provides users with the ability to enter any text to be

located in either al schemasin the project, or only the schemas currently open in the editor. Once the Find parameters
have been defined, click Find All to be presented with alist of filesthat contain the search text.

D Find In Files X
Find text: cell -
Parameters

Regular Expression
lgnore Case

Whole Words

Leok in: All Sehemas in Project -

Find All Close

Click an entry within the results list to display the text in the editor.

20

ASN1C GUI Users Guide

D search Results X

~ |/home/ec2-user/vanessa/asnlc-v77A/specs/camel/ca...
670 cellGloballd

578 --The cellGloballd shall contain a Cell Glebal
39 cellGloballdOrServiceArealdOrLAl [0] Cell
-- cellGloballdOrService ArealdOrLAl shall cc
-- sai-Present indicates that the cellGloballd
--The 3GPP TS5 29.078 standard, about cellC
9 -- sai-Present indicates that the cellGloball
2405 -- sai-Present indicates that the cellGloballd
24 - cellGloballdOrServiceArealdFixedLeng
2417 --This coding would disrupt the backward co
3216 operationMotCancellable (2)

Cad

Ao U)X p—

Selecting 'Replace in Files' displays the Replace in Files window, which provides users with the ability to enter any
text to be located and replaced in either all schemas in the project, or only the schemas currently open in the editor.
Once the Find and Replace parameters have been defined, click Replace All to be presented with a list of files that
include the word to be changed.

D Replace In Files X
Eind text: cell -
Replace With cellular -
Parameters

Regular Expression
lgnore Case

Whole Words

Look in: All Schemas in Project -

Replace All | Close |

Click an entry within the results list to display the text in the editor, and if desired, deselect any check box next to
an entry in the results list to prevent the replacement from happening on that result. Click Replace to perform the
word replacement.

21

ASN1C GUI Users Guide

D search Results X

= ||| /homefec2-user/vanessa/asnlc-vTTA/specs/camel...

] 670 cellGlaballd
] 678 --The cellGloballd shall contain a Cell Gl
] 1293 cellGloballdOrService ArealdOrLAl [0]
] 1402 -- cellGloballdOrService ArealdOrLAl sha
] 1405 -- sai-Present indicates that the cellGlob
] 2396 --The 3GPP T5 29.078 standard, about ¢
] 2399 -- sai-Present indicates that the cellGlo
] 2405 -- sai-Present indicates that the cellGlob
] 2410 -- cellGloballdOrService ArealdFixedl
] 2417 -- This coding would disrupt the backwar
] 3216 operationMNotCancellable (2)
Replace

ASN.1 Tree Window

Once a schema has been validated or compiled in ACGUI, the ASN.1 Tree window provides an interactive view of
the ASN.1 typesdefined init.

ASM,1Tree & X

&

2= ACSE-1
- InformationFramework
» B Types
- Values
¥ id-at-aliazedEntryMame
% id-at-ohjectClass
id-mr-distinguishedMameMa...
id-mr-objectldentifierMatch
» B Information Object Classes

[

B Information objects
» E: Information object sets
» B UsefulDefinitions

At the top level of the tree, the modules of the schema are shown. Each of these modules can be expanded to reveal
branches for the types, values, information objects, etc. defined within. Click on any node of the tree to show the
relevant ASN.1 definition in a built-in browser in the Editor window.

Error Log Window

The Error Log window displays messages related to schema validation and compilation. Whenever a schemais suc-
cessfully validated or compiled, the Error Log reports a success. If an error occurs, an error message is displayed.

22

ASN1C GUI Users Guide

Error Log g %

Clear Save Log

File Line Column Message

Parsing ASN.L definitions..
@2 Validation was successful

In many cases, an error is associated with a particular portion of the schema being compiled. Click on an error to
open the schema editor at the location in which the error occurred. If more than one error is reported, clicking Next
Error and Previous Error in the toolbar moves the Editor window to the part of the schemawhere the next or previous
error occurred.

When the reported errors are no longer needed, click Clear in the Error Log window to remove them from display.

Project Settings

The Project Settings window is where details regarding the project, such as encoding rules, target language, and code
features to generate are modified. The window contains the following tabs: Language, Output, Function Generation,
Constraints and Debugging, Code Modifications, language-specific code modifications, and Build Options.

Language tab

The Language tab contains options for selecting atarget language, encoding rules, ASN.1 Standards, translation, and
input options.

23

ASNI1C GUI Users Guide

D ASNIC Settings

x
Language | Output | Function Generation Constraints and Debugging I Code Modifications I Ccs l Build Options l
Application Language Type
(" None CC C C++ ® Cz " Java (" Python Go
Encoding Rules
TBER [CER I DER [PR [APER M UPER [JSON W XER T xML I AVN [T QR [~ COER
ASN,1 Standard
(¢ X 680-senies - latest, in-force ASN.1 standards (" X.680-series - 2008 ASN.1 standards
(" X.680-series - 2021 ASN.1 standards (" X.208 - earlier, withdrawn standard
(" X.680-series - 2015 ASN.1 standards
—Additional Translations
™ Generate HTML files for input ASN.1 I™ Generate equivalent XML schema ™ Pretty-print ASN.1
Input Optiens
™ Perform a lax syntax check I Allow ambiguous tags
ok | cancel
The Language tab contains the following sections:
Application Language Type This section provides users with the ability to define the target language for the

project. A target language must be selected in order to compile a schema.

Depending on the target language selected, additional options are displayed
within the Output tab.

For C or C++ target languages, the C/C++ Output Options section controls how
generated code is distributed across source files.

24

ASN1C GUI Users Guide

Encoding Rules
ASN.1 Standard
Additional Trandations

Input Options

Output tab

C/C++Output Options

Defaultinteger type: [int32 <

Maxines per fle: |

Binaris Drectory |

J
Objectdrectory |] [romse

J

J

For C#, the C# Code Organization section controls how generated codeis dis-
tributed across source files and how files are organized into directories.

C# Code Organization
[output code to directories based on module names

Code generation option: |One .cs file per type ™ | File name:

Binaries Directory | | Browse

Libraries Directory | | Browse

For Java, the Java Code Organization section controls how generated code
should be organized into directories based on the ASN.1 module for which they
were generated. Alternatively, generated files are placed directly into the output
directory.

Java Code Organization

[output code to directories based on module names

Clazs directory Browse

This section provides users with the ability to define one or more encoding rule
sets to be selected for the generated code.

This section provides users with the ability to apply current or previousy-de-
fined ASN.1 standards to the generated code.

This section provides users with the ability to define the options for generating
transformed versions of the input schema, such as HTML or pretty-printed.

This section provides users with the ability to define how strict the compiler is
when parsing ASN.1 schema.

The Output tab contains options for selecting encoding rules, as well as output and project directories.

25

ASNI1C GUI Users Guide

QD ASNIC Settings

Language Qutput | Function Generation | Constraints and Debugging | Code Modifications I C/Cee Build Options |

Output Directory | Browge

Project Directory I Browse

C/C++ Qutput Options

(® Qutput code to .c/.h files based on module names

(" Qutput all code to a single .c/.h file | pp h

" Output each generated function to its own source file

Max lines per file: |

Object directory I Browse

Libraries Directory I Browse

Binanes Directory | Browse
0K | Cancel

The Output tab contains the following sections:

Output Directory and Project Di- This section provides userswith the ability to definein which directory the code

rectory output and/or project should be stored.

Language-specific Output Options This section provides users with the ability to define additional output options
specific to the language type chosen on the Language tab, as well asthe ability

to define additional directories.

Function Generation tab

The Function Generation tab provides settings for the functionality to include in generated code.

26

ASN1C GUI Users Guide

@ ASNIC Settings

Language | Output Function Generation
Generated Function Types

[Encoding v Initialization

lv Decoding ¥ Memory Free

[~ Comparison [~ Named Bit Macros

I Copy

[~ Stream

Specify PDU Types

(¢ Default (unreferenced types)

Constraints and Debugging | Code Modifications | C/Ce+ Build Options

Printing Functions

™ Stangdard Output [Streaming [String
Print Format ® Bracetext " Details
Al (" Selected |

Sample Program Generation

[~ Specify a PDU for the sample programs I
[~ Generate test code to populate data structures with random data at run-time
[~ Generate test code to populate data structures with random hard-coded values at compile time
[” Generate reader sample program [~ Generate writer sample program

[~ Generate client sample grogram ™ Generate server sample program

[~ Generate program from template |

0K Cancel

The Function Generation tab contains the following sections:

Generated Function Types

Specify PDU Types

Sample Program Generation

Language-specific Functions

This section provides users with the ability to define granular control of which
functionsto generate. The printing functionsallow for various printing schemes
to be generated, such as print-to-string and print-to-standard-output, and how
the printed data should be formatted.

This section provides userswith the ability to define which productionsto select
as PDUs.

This section provides users with the ability to define the generation of simple
encoding and decoding programs, which demonstrate using the generated code.
Additionally, the sample writer program can optionally encode randomly-gen-
erated test data.

Depending on the target language sel ected, additional options may be displayed
within this section of the Function Generation tab.

For C and C++, additiona functions for memory management and macros for
dealing with named bitsin BIT STRINGs can be generated. Initialization func-
tions are generated by default, but may be turned off.

27

ASN1C GUI Users Guide

C/C++ Generated Functions
Generate Initialization Functions
D Generate Memory Free Functions

[[] Generate Named Bit Macros

For Java, get and set methods can be generated for members of generated class-
es. It is also possible to generate methods that can fetch certain types of meta-
data (for example, if an element is optional). A similar option exists for C#.

Java Function Cptions
[] Generate getter and setter methods
[Generate metadata methods

Constraints and Debugging tab

The Constraints and Debugging tab holds settings related to constraint handling, event handling, and logging in gen-

erated code.

@ ASNIC Settings

Language | Output Function Generation Constraints and Debugging Code Modifications
Constraints
[” Do not generate code supporting contents constraints
™ Do not generate constraint checks
[Enable strict constraint checks
[~ Generate code to handle table constraints

[Interpret size constraints strictly

Debugging and Event Handling

[Generate code to invoke event handler callback functions

[~ Generate code to invoke raw event handler callback functions
[” Do not generate type structures

™ Add tracing diagnostic messages to code

[~ Enable output of compilation warning messages

Build Options

0K Cancel
The Constraints and Debugging tab contains the following sections:
Constraints This section provides users with the ability to add or remove various types of

restriction checks from the generated code.

28

ASN1C GUI Users Guide

Debugging and Event Handling This section provides users with the ability to add debug tracing and event
hooks. In addition to enabling event callbacks, generation of type structures
can also be disabled, in which case generated decode functionality ssimply calls
user-created event handlers and does not perform its own decoding operation.

Code Modifications tab
The Code Modifications tab contains a number of options for generating simplified code.
D ASNIC Settings »

Language I Output | Function Generation | Constraints and Debugging Code Modifications | C/C++ | Build Options
Space Optimizations
» Generate compact code
[T Do not generate code to save/restore unknown extensions
[~ Do not generate types for items embedded in information pbjects
[~ Donot generate XML namespaces for ASN.1 modules

[~ Generate short form of type names

Other Options

[v Automatically create unigue names for duplicate items
[~ Do not add date stamp to generated files

[Generate code for dependent type definitions

[~ Disable special treatment for BCD/TBCD OCTET STRING

[~ Disable generation of the asn1c command comment

0K Cancel

The Code Modifications tab contains the following sections:

Space Optimizations This section provides users with the ability to remove unwanted or unneeded function-
aity and shorten the names of generated types.

Other Options This section provides users with the ability to define several miscellaneous settings,
including the option to generate code for types that have been imported into the current
schema

Language-specific tab

Additional code modification options that are language-specific are shown in a separate tab next to the Code Modifi-
cationstab. Thelabel and contents of this tab changes based on the language selected within the Output tab.

For C/C++, the tab is displayed as follows, and includes several settings for adjusting how ASN.1 types are mapped
to native C/C++ types:

29

ASN1C GUI Users Guide

C/C++ Code Modifications

[add & header guard prefix

[C] Add a C++ namespace

SEQUEMCE OF (SET OF use: @ default) linkedlist) dynamicarray () static array
[7] Generate static member variables in choice constructs
[Use enumerated types instead of integers

[7] Generate fully qualified enumerated constants

[] Disable fixed sizing for small bit strings

[] suppart indefinite PER lengths

[Pad PER BIT STRING-contained values

[7] Generate code compatible with 64-bit architectures

[Generate code that uses C++11 features induding STL

For C#, the tab is displayed as follows, and includes settings to alow for manipulating the namespace into which
code is generated:

Note

The Javatab contains similar options.

C# Code Modifications
[specify namespace

[specify namespace prefix

Build Options tab

When atarget language other than None is selected, an additional Build Options tab is displayed to provide language
environment-specific settings for generating makefiles and build scripts.

For C or C++, thetab is asfollows;

30

ASN1C GUI Users Guide

[] Generate Visual Studio Project [] Generate Makefiles
5 2019 ndows (nmake)
5 2017 GNU
5 2015
V5 2013
V5 2012
VS 201i
VS 2008 C/C++ Compile Optimization
VS 2005 (@) Default

O Space Oplimization
(") Speed (Time) Optimization

[Link applications using shared libraries

Link applications against 64-bit libraries

A makefile can be generated in either Windows or GNU format. For Windows, a Visual Studio project can also
be generated. Under the Build Libraries section, which generates the build script to build a library rather than an
executable, the desired variety of library can be selected.

The C/C++ Compile Optimization section allows for defining whether Space or Time optimization qualifiers should
be added to the C compilation command-line in the makefile.

For C#, the tab is as follows:

31

ASN1C GUI Users Guide

Build Optians
] Generate a list of .cs files (in <modulename=.mk)
[] Generate a makefile
] Generate a visual Studio Project
VS 2019
VS 2017

VS 2015

[strongly named key file:

For C#, amakefile or Visual Studio project can be created, optionally including a*.mk file listing the files generated.
An option to specify a strongly named key file is also available.

For Java, the tab is as follows:

Build Options

[Generate a list of .java files {in <modulename =.mk)
[[] Generate an Ant build script

[Generate a batch file or shell script

Like C#, Java can aso provide a*.mk generated file list, aswell as an Ant build script and a batch or shell script.

For Python, the tab is as follows:

Build Options

[create a batch file or shell script to generate Python code

For Python, ASN1C can create a batch file (Windows) or shell script (non-Windows) that generates the Python code
as set up by the GUI settings.

For Go, thetab is asfollows:

32

ASN1C GUI Users Guide

Build Options
[create a makefile to generate Go code
[] create a 150N file with random test data

[] bon't create a main.go file

The Go code generator can create a makefile to generate and build Go code. The generator can also create a JSON

file with random test data. Additionally, an option for the generator not to create a main.go file (for instance, if there
already is onethat has been modified) is available.

33

Chapter 4. Generated Python Source Code

A Python source file with extension '.py' may be generated for each module in an ASN.1 specification sourcefile. If
the module does not contain any ASN.1 types that would result in the mapping to a Python class or value definition,
no Python fileis generated.

General Form of a Generated Python Source
File

The following items may be present in a generated source file:

* Import statements

» Simple value definitions

* Class declarations

e Complex value definitions

Import Statements

Import statements are generated to include definitions from the built-in run-time components as well as from other
ASN.1 modules from which definitions were imported. As example of generated importsis asfollows:

i nport osyspyrt.asnlerror as exc
i mport osyspyrt.asnluni vtype as univ
i mport osyspyrt.asnlber as ber

Imports from the ASN.1 common run-time libraries are first. These are prefixed by the package name "osyspyrt".
The symbols are mapped to a prefix to prevent name clashes with items in imported ASN.1 specifications or the
specification being compiled. These are followed by import statements corresponding to ASN.1 IMPORT statements
in the module being compiled.

Simple Value Definitions

Simple value definition are primitive typed values that do not have any dependencies on generated classes. Values of
type BOOLEAN, INTEGER, NULL, OBJECT IDENTIFIER, character string, or binary string fall into this category.
Global assignments are generated for these types. An example would be as follows:

id_sha256 = [2, 16, 840, 1, 101, 3, 4, 2, 1]
id_sha384 = [2, 16, 840, 1, 101, 3, 4, 2, 2]
id_sha512 = [2, 16, 840, 1, 101, 3, 4, 2, 3]

pkcs_1 = [1, 2, 840, 113549, 1, 1]

These are OBJECT IDENTIFIER values from the PKCS-1 ASN.1 module. In this case, the values do not depend on
any generated or built-in class definition, they are simply lists of integers.

Class Definitions

Python class definitions are generated for the following ASN.1 types:

34

Generated Python Source Code

Constructed types (SEQUENCE/SET, SEQUENCE OF/SET OF, CHOICE)
* Primitive types with constraints

» Enumerated types

BIT STRING types having named bits

The class definition for a composite type such as a SEQUENCE contains a constructor, encode/decode methods for
different encoding rules, and other methods depending on sel ected compilation options. For example, if -print is spec-
ified, an __str method is generated to create a string representation of data in the class, and a print_value method
is added to print the value to standard output.

In the other cases, the class contains only static methods that call the underlying primitive encode or decode function
and then check the constraint values. For ENUMERATED, adict is generated that associates identifier names with
integer values. For aBIT STRING with named bits, a class is generated to enable bit manipulation by bit name.

Complex Value Definitions

Complex value definitions are values formed from composite types such as SEQUENCE or SET that depend on class
definitions. The value definitions are created by creating an instance of the type class and then sequentially populating
each element with the assigned value.

35

Chapter 5. ASN.1 Type to Python Class
Mappings

The following sections discuss the specific mappings of ASN.1 typesto Python classes. In the case of most primitive
types, classes are not generated. Values in the supported value formats are encoded directly.

For all types aclassis generated if the typeistagged; e.g.:
TaggedBMP :: = [APPLI CATION 2] BMPString

This statement is true even if the description below for a particular type says no class is generated for the type or
doesn't mention the type being tagged as a condition that will cause a class to be generated.

BIT STRING

There are several waysan ASN.1 BIT STRING may be represented in Python:
e osyspyrt.asnlunivtype. AsnlBitString

Thisis the type that decoding will produce by default. It combines binary data with the number of bitsin the BIT
STRING. This class provides attributes and methods useful in manipulating the value either as a sequence of bytes
or as a sequence of bits.

 bytesor bytearray object
Either of these can be used to provide data for encoding. The BIT STRING will include all bits of the given value.

» Aninstance of agenerated class. Thisapplieswhenthe BIT STRING isdefined with named bits, as described bel ow.

BIT STRINGs with named bits

A Python classisgenerated for an ASN.1 BIT STRING defined with named bits. The generated class defines attributes
and properties that are useful for working with the value using the named bits. As an example, consider this ASN.1:

perations ::= BIT STRING { conmpute-checksunm 0), conpute-signature(l),
verify-checksum(2), verify-signature(3), encipher(4), decipher(5), hash(6),
gener at e- key(7) }

The resulting (elided) classis:

cl ass Operations(univ. NamedBit sBase):

naned bits = {0: "conpute-checksunt,
1. "conpute-signature",

7: "generate-key"}
"""Nanmed bit map for use with NanedBitsBase."""

@roperty

36

ASN.1 Type to Python Class Mappings

def compute_checksun(sel f):
"""Return true if conpute-checksumbit is set."""

@omput e_checksum setter
def compute_checksun(sel f, val ue=True):
"""Set conpute-checksumbit on/off."""

Asyou can see, properties are defined with names correponding to each of the named bits. Y ou can use these to set/
get the value of each named bit.

Also, the generated classderivesfromosyspyrt . asnluni vt ype. NamedBi t Base, sothat it ultimately derives
from, and enhances, the behavior of osyspyrt . asnluni vt ype. AsnlBit Stri ng. In particular:

* Instances of the generated class can beinitialized using list of named bits:
xyz = Operations(("encipher", "decipher"))

» Thevalue of instances of the generated class can be set using alist of named bits:
xyz.set (("enci pher", "decipher"))

» The str output will be alist of named bits:
xyz = Operations(("encipher", "decipher"))
print(str(xyz)) # prints "[encipher, decipher]”

» Theget_ bit and set_bit methods can be passed a bit name instead of a bit index.

Y ou are not required to use the generated class, but the generated decoders will use it for decoded values.

BOOLEAN

A Python class is generated for an ASN.1 BOOLEAN type only if the typeistagged. Thisis only true for BER/DER
encoding rules; in other cases, no classis generated.

If aclassisgenerated, it will contain static methods for the BER encoding or decoding of a boolean value.
Example ASN.1:

B ::= [APPLI CATI ON 2] BOOLEAN

Generated Python Class:

cl ass B:
@t ati cnet hod
def ber_decode(decbuf, explicit=True, inpllen=None):

@t ati cnet hod
def ber_encode(val ue, encbuf, explicit=True):

37

ASN.1 Type to Python Class Mappings

The value that is returned by the decode method or passed into the encode method is a Python boolean value (True
or False).

See the BER encode/decode methods for information on how to call these methods.

INTEGER

An ASN.1 INTEGER assignment results in the creation of a Python class in the following cases:
» Thetype hasaconstraint (for example, INTEGER (1..10))
 The type has named numbers

In these cases, aclassis generated that contains static encode and decode methods. For encode, the method first checks
the value to make sure it is within the bounds of the constraint and then calls the encode_integer function within the
base encoding rules library. For decode, the decode integer function is first called to decode the value and then the
value checked against the constraints to determineiif it is within the defined range.

In the case of named numbers, tables are generated to map the actual integer valuesto their numeric equivalents. These
allow an integer value to be represented as a string or integer value. If string, the string valueislooked up in the table
prior to encode. If integer, it is encoded directly. On decode, the decode integer value is looked up in the table to see
if it has anamed identifier. If it does, the identifier string value is returned; otherwise the integer value.

Example ASN.1:
I ::= INTEGER (1..10)
Generated Python Class:

class |I:
@t ati cnet hod
def ber _decode(decbuf, explicit=True, inpllen=None):

@t ati cnet hod
def ber _encode(val ue, encbuf, explicit=True):

The value that is returned by the decode method or passed into the encode method may be an integer numeric value,
or, in the case of named numbers, may be the string representation of the number.

See the BER encode/decode methods for information on how to call these methods.

ENUMERATED

An ASN.1 ENUMERATED assignment always resultsin the creation of aPython class. It isvery similar to the named
number case described for INTEGER above except in this case, if the identifier is not within the defined set, an
exception israised. However, an exception to thisrule isif the ENUMERATED type is extended (i.e. hasa... within
it). Inthis case, it is treated the same as a named number since it may have a value outside of the defined set.

OCTET STRING

A Python classis generated for an ASN.1 OCTET STRING type only if the following are true:

38

ASN.1 Type to Python Class Mappings

e Thetypeistagged.

» Thetypehasasize constraint (for example, OCTET STRING (SIZE(1..5))

If aclassisgenerated, it will contain static methods for the BER encoding or decoding of the value.
Example ASN.1:

Os2 ::= OCTET STRING (S| ZE(1..5))

Generated Python Class:

class Os2:
@t ati cnet hod
def ber_decode(decbuf, explicit=True, inpllen=None):

@t ati cnet hod
def ber_encode(val ue, encbuf, explicit=True):

The value that is returned by the decode method or passed into the encode method is a Python bytearray. Also, for
encode, the type of the value passed in may be a string. In this case, the ordinal bytes of the characters are encoded.

See the BER encode/decode methods for information on how to call these methods.

Character String Types

ASN.1 character string types include fixed 8-bit character string types (IA5String, PrintableString, NumericString,
etc.), variable-length character size types (UTF8String), and 16-bit wide character string types (BMPString) and 32-bit
wide character string types (Universal String). A Python classis generated for these typesonly if thefollowing aretrue:

» Thetypeistagged.

» Thetype hasasize constraint (for example, IA5String (SIZE(1..5))

If aclassisgenerated, it will contain static methods for the BER encoding or decoding of the value.
Example ASN.1:

CharStr ::= I A5String (SIZE(1..5))

Generated Python Class:

class CharStr:
@t ati cnet hod
def ber_decode(decbuf, explicit=True, inpllen=None):

@t ati cnet hod
def ber_encode(val ue, encbuf, explicit=True):

The value that is returned by the decode method or passed into the encode method is a Python string.

See the BER encode/decode methods for information on how to call these methods.

39

ASN.1 Type to Python Class Mappings

Time String Types

A Python classis generated for an ASN.1 time string type (GeneralizedTime or UTCTime) only if the typeis tagged.
Thisisonly true for BER/DER encoding rules; in other cases, no classis generated.

If aclassisgenerated, it will contain static methods for the BER encoding or decoding of atime string value.
Example ASN.1:

GT ::= [APPLI CATI ON 2] GeneralizedString

Generated Python Class:

cl ass GT:
@t ati cnet hod
def ber _decode(decbuf, explicit=True, inpllen=None):

@t ati cnet hod
def ber _encode(val ue, encbuf, explicit=True):

The value that is returned by the decode method or passed into the encode method is a Python string value.

Note that the newer ASN.1 time types such as TIME, DATE, TIME-OF-DAY, etc. as documented in ITU-T X.680
Clause 38 are not supported in this release.

See the BER encode/decode methods for information on how to call these methods.

REAL

A Python classis not generated for the ASN.1 REAL type. REAL values are represented using:
* float

Used to represent any base-2 REAL value, +/-INF, or NaN.
* decimal.Decimal

Used to represent any base-10 REAL vaue, +/-INF, or NaN.

Note that the ASN.1 data model divides al mathematical real values, other than zero, into two sets of values, base-10
and base-2 values. The unconstrained REAL type allows values from both sets, but REAL can be constrained to allow
values from one set only. Encoding rules typically encode base-10 and base-2 values differently. Decoders will use
the Python type corresponding to how the value was encoded (base-2 or base-10). For encoding, if the REAL typewas
constrained to only base-2 or only base-10 values, use float or decimal.Decimal, respectively.

OBJECT IDENTIFIER and RELATIVE-OID

A Python classis generated for an ASN.1 OBJECT IDENTIFIER or RELATIVE-OID typeonly if thetypeistagged.
Thisisonly true for BER/DER encoding rules; in other cases, no classis generated.

If aclassisgenerated, it will contain static methods for the BER encoding or decoding of an OID value.

Example ASN.1:

40

ASN.1 Type to Python Class Mappings

O D ::= [APPLI CATI ON 2] OBJECT | DENTI FI ER
Generated Python Class:

class A D:
@t ati cnet hod
def ber_decode(decbuf, explicit=True, inpllen=None):

@t ati cnet hod
def ber_encode(val ue, encbuf, explicit=True):

The value that is returned by the decode method or passed into the encode method is a Python integer list value. The
list contains the arcs for the OID value.

See the BER encode/decode methods for information on how to call these methods.

41

Chapter 6. Generated BER/DER Encode
Methods

For Python, the generation of memory-based, definite length BER (Basic Encoding Rules) encode methodsisthe only
encoding method supported at thstime. This also covers the case of DER (Distinguished Encoding Rules) which also
uses definite lengths. The extra canonical checks such as sorting elementsin a SET are also done if DER is selected
as the encoding rules type.

For each ASN.1 production defined in an ASN.1 source file, a Python encode method may be generated. This method
will convert a populated variable of the given type into an encoded ASN.1 message.

For primitive types, an encode method is only generated if it is required to ater the encoding of the BER run-time
function for that type. The Python BER run-time library contains a set of common run-time base methods in the
Asn1BerEncodeBuffer class. These functionsinclude support for encoding content as well as adding the universal tags
associated with the types as defined in the X.680 standard.

So for simple assignments, the generation of an encode method is not necessary. For example, thefollowing production
will not result in the generation of an encode method or even a Python class:

X ::= | NTEGER

In this case, the user must use the standard run-time function in the BER library to encode a a value of the type. In
this case, this would be the encode_integer function.

However, if thetypeis altered to contain atag or constraint, then a Python class with a static custom encode method
would be generated:

X ::= [APPLI CATI ON 1] | NTEGER
In this case, specia logic is necessary to apply the tag value.

Some types will always cause Python classes with encode methods to be generated. At the primitive level, thisis
true for the ENUMERATED type. This type will always contain a custom set of enumerated values. All constructed
types (SEQUENCE, SET, SEQUENCE/SET OF, and CHOICE) will cause Python classesto be generated that include
encode methods.

Run-time and Generated Python Encode Meth-
ods

Three types of Python encode functions/methods are available for encoding different types of data. These are:

e Standard base run-time functions. These exist in the asnlber.py run-time module and exist within the
Asn1Ber EncodeBuffer run-time class. Examples are encode_boolean, encode integer, encode _bitstr, etc.

* Static methodsin Python classes for primitive types. Classes are generated for primitive typesthat have been altered
by adding tagging information or constraints. The method name in this case is ber_encode.

* Instance methods in Python classes for constructed types. Classes are generated for SEQUENCE, SET, SE-
QUENCE/SET OF, and CHOICE constructs. The encode method in theis case encodes the i nstance attributeswhich
correspond to the ASN.1 elements defind in the ASN.1 types. The method name in this case is also ber_encode as
it was in the static method case.

42

Generated BER/DER Encode Methods

The signature for a Standard base run-time method in the Asn1Ber EncodeBuffer is as follows:
def encode_* (self, value, explicit=True)
where * would be a primitive type name (boolean, integer, etc.).

The self argument is a reference to the Asn1Ber EncodeBuffer object from which it was invoked (note that in Python,
this argument is not explicitly passed, it refers to the object invoking the method). The value argument isthe value to
be encoded. The explicit argumnet is a boolean argument indicating if the universal tag and length associated with the
primitive type should be applied on top of the encoded content.

Thereturn valueisthelength in octets of the encoded message component. Unlike the C/C++ version, anegative value
is never returned to indicate an encoding failure. That is handled by the Python exception mechanism.

The signature for a static BER encode method in a class generated for a primitive typeis as follows:

Gt ati cnet hod
def ber_encode(val ue, encbuf, explicit=True):

In this case, there is no 'self' argument. A reference to the encode buffer object is passed as aformal argument in the
2nd position. The value and explicit arguments are as they were in standard base run-time method case and the return
valueis also the same (the encoded length).

The signature for an instance BER encode method in a class generated for a constructed typeis as follows:
def ber _encode(sel f, encbuf, explicit=True)

The self argument is areference to an object of the generated class (note that in Python, this argument is not explicitly
passed, it refers to the object invoking the method). >The encbuf argument is areference to BER encode buffer object
to be used to encode the data. The explicit argument is that same asin the other two cases.

Populating Generated Variables for Encoding

Populating attributes of instances of classes generated for constructed types can be done by creating an instance of
the class and then directly populating each attribute. For primitive types, nothing needs to be populated. The values
to be encoded are passed directly to the methods.

For classes generated for SEQUENCE/SET OF constructs, the standard Python list structure is used. The typical
method is to create an empty list (x = []) and then append itemsto it.

The only primitive type that is an instance of a class having multiple attributes is BIT STRING. In this case, the
AsnlBitSring class contains an attribute named numbits to specify the number of bitsin the string and a value to
hold the actual data.

Some primitive type encode methods can accept data in multiple forms. An example of this is the encode method
generated for an INTEGER with named numbers. In this case, the encode method will accept an argument of type
string which is assumed to be a named number identifier or it can accept an argument of type int which is the integer
value to be encoded.

Procedure for Calling Python BER Encode
Methods

The procedure to call a Python encode method for the different cases described above isbasically the same. It involves
the following three steps:

43

Generated BER/DER Encode Methods

1. Create an encode message buffer object into which the value will be encoded.
2. Invoke the encode method.
3. Invoke encode message buffer methods to access the encoded message component.

The first step is the creation of an encode message buffer object. This is done by simply creating an instance of the
Asn1BerEncodeBuffer class:

encbuf = AsnlBer EncodeBuf fer ()

The encode method is then invoked. In the simple case of a primitive type with no generated class, this involves
invoking one of the methods defined in the encode buffer class to encode a primitive value. For example, to encode
an integer, one would do:

encl en = encbuf. encode_i nt eger (10)

Thiswould encode the integer value 10 and add the universal tag and length bytes (the explict argument is set to True
by default).

The procedurefor invoking astatic method issimilar. Thegeneral formis<classname>.encode(value, encbuf, explicit).
So, for example, a class named EmployeeNumber would be generated for the following definition:

Enpl oyeeNunmber ::= [APPLI CATION 2] | MPLICI T | NTEGER
To encode an employee number of 51, one would do the following:

Enpl oyeeNunber . encode(51, encbuf)

This would encode value 51 and add the APPLICATION 2 tag.

Finally, to invoke the instance method in the class generated for a constructed type, one would first populate the
attribute values and then invoke the encode method. To encode an instance of the Name classin the employee sample,
one would first create an instance of the class, populate the attributes, and then invoke the encode method:

j Smit hName = Nane()

j Sm t hName. gi venNane = ' John'
jSmthNanme.initial ="'PF

j SmithNane. fani | yNane = ' Smith'

j Sm t hNane. encode(encbuf)

Thiswill encode the full name and add the assigned tag.

The final step once the dataiis encoded isto retrieve areference to it from the encode buffer object. Thisis done using
the buffer method. The encoded datais returned in the form of an in-memory byte array.

A complete example showing how to invoke an encode method is as follows:

Note: personnel Record object was previously popul ated with data

Step 1: Create an encode buffer object

enchuf Asnl1Ber EncodeBuf f er ()

Step 2: Invoke the encode nmethod. Note that it rmust be done
fromwithin a try/catch bl ock. .

Generated BER/DER Encode Methods

try:
pe

i f

—h Th T H H HH

—h —h —h

except
tb

pr

rsonnel Recor d. encode(encbuf, True);

(trace):
dunmp encoded nessage
print (encbuf. bin_dunp())

Step 3: Access the encoded nessage conponent. In this
case, we use nmethods in the class to wite the conponent
to a file and output a formatted dunp to the nessage. dnp
file..

Wite the encoded record to a file
= open(' message.dat’', 'wb')

.write(encbuf.buffer())
.close()

Cenerate a hex dunp file for comparisons

= open(' nmessage. hex', 'w)
.write(hexdunp(encbuf.buffer()))
.close()

Excepti on:
= traceback. f or mat _exc()
int(th)

45

Chapter 7. Generated BER/DER Decode
Methods

For Python, BER decode methods are generated that support decoding BER datain either definite or indefinite length
from. Data may be read from any valid streaming data source supported by Python including memory, files, and
sockets. Decoding datain DER and CER format is also supported as these are subsets of BER, however, checks are
not done to ensure thisdatain in proper canonical format as specified by these rules.

For each ASN.1 production defined in an ASN.1 source file, a Python decode method may be generated. This method
will read data from the stream specified when the decode buffer object was created and decode into variables in
memory.

For primitive types, a decode method is only generated if it is required to ater the BER encoding the standard run-
time function for that type would produce. The Python BER run-time library contains a set of common run-time
base methods in the Asn1BerDecodeBuffer class. These functionsinclude support for decoding content as well asthe
universal tags associated with the types as defined in the X.680 standard.

So for simple assignments, the generation of a decode method is not necessary. For example, the following production
will not result in the generation of an decode method or even a Python class:

X 1= I NTEGER

In this case, the user must use the standard run-time function in the Asn1BerDecodeBuffer classin the BER run-time
library to decode a avalue of the type. In this case, thiswould be the decode integer function.

However, if the typeis altered to contain atag or constraint, then a Python class with a static custom decode method
would be generated:

X ::= [APPLI CATI ON 1] | NTEGER
In this case, specia logic is necessary to parse the tag value.

Some types will always cause Python classes with decode methods to be generated. At the primitive level, thisis
true for the ENUMERATED type. This type will always contain a custom set of enumerated values. All constructed
types (SEQUENCE, SET, SEQUENCE/SET OF, and CHOICE) will cause Python classesto be generated that include
decode methods.

Run-time and Generated Python Decode Meth-
ods

Three types of Python decode functions/methods are available for decoding different types of data. These are:

o Standard base run-time functions. These exist in the asnlber.py run-time module and exist within the
Asn1BerDecodeBuffer run-time class. Examples are decode_boolean, decode_integer, decode_bitstr, etc.

« Static methodsin Python classesfor primitive types. Classes are generated for primitive typesthat have been altered
by adding tagging information or constraints. The method namein this case is ber _decode.

* Instance methods in Python classes for constructed types. Classes are generated for SEQUENCE, SET, SE-
QUENCE/SET OF, and CHOICE constructs. The decode method in theis case decodes data into the instance at-
tributes which correspond to the ASN.1 elements defind in the ASN.1 types. The method name in this caseis also
ber_decode as it wasin the static method case.

46

Generated BER/DER Decode Methods

The signature for a Standard base run-time method in the Asn1Ber DecodeBuffer is as follows:
def decode_* (self, explicit=True, inpllen=None)
where * would be a primitive type name (boolean, integer, etc.).

The self argument is a reference to the Asn1Ber DecodeBuffer object from which it was invoked (note that in Python,
this argument is not explicitly passed, it refers to the object invoking the method). The explicit argument is a boolean
argument indicating if the universal tag and length associated with the primitive type should be parsed prior to decoding
the content.

The impllen argument is a length oject that only has meaning if explicit is False. In this case, it specified the length
of the contents field to be decoded. If explicit is True, this length is parsed from the encoded tag/length value that
precedes the content.

Thereturn value is the decoded content value. Thiswill be of whatever type the content being decoded is as specified
in the ASN.1 schema. Decoding errors are handled by the Python exception mechanism.

The signature for a static BER decode method in a class generated for a primitive typeis as follows:

@&t ati cnet hod
def ber_decode(decbuf, explicit=True, inpllen=None):

In this case, there is no 'self' argument. A reference to the decode buffer object is passed as aformal argument in the
2nd position. The explicit and impllen arguments are asthey werein standard base run-time method case and the return
value is also the same (the decoded value).

The signature for an instance BER decode method in a class generated for a constructed typeis as follows:
def ber_decode(sel f, decbuf, explicit=True, inpllen=None)
The self argument is areference to an object of the generated class (note that in Python, this argument is not explicitly

passed, it refersto the object invoking the method). >The decbuf argument is areference to BER decode buffer object
to be used to encode the data. The explicit and impllen arguments are that same as in the other two cases.

Procedure for Calling Python BER Decode
Methods

The procedureto call a Python decode method for the different cases described aboveisbasically the same. It involves
the following steps:

1. Create a decode message buffer object that describes the stream from which the value will be decoded.
2. Invoke the decode method.

Thefirst step isthe creation of adecode message buffer object. Thisisnormally done by invoking a class method to to
specify the data source. Two standard methods that can be used for this purpose are from_bytes to specify a memory
source or from file to specify afile source. For example:

decbuf = AsnlBer DecodeBuffer.fromfile(' message.dat")

The decode method itself isthen invoked. In the simple case of a primitive type with no generated class, thisinvolves
invoking one of the methods defined in the decode buffer class to decode a primitive value. For example, to decode
an integer, one would do:

47

Generated BER/DER Decode Methods

val ue = decbuf. decode_i nt eger ()

. Thiswould decode the content at the current decode buffer cursor position which is expected to be atag-length-value
(TLV) with integer universal tag and integer content.

The procedure for invoking a static method is similar. The general form is <classname>.decode(decbuf, explicit, im-
pllen). So, for example, a class named EmployeeNumber would be generated for the following definition:

Enpl oyeeNunber ::= [APPLI CATION 2] | MPLICIT | NTEGER
To decode an employee number, one would do the following:
val ue = Enpl oyeeNunber. decode(decbuf)

Thiswould check to ensure the tag value at the current decode buffer position is APPLICATION 2 tag and then parse
the length and decode the content. If successful, the decoded integer value will be assigned to value data variable.

Finally, to invoke the instance method in the class generated for a constructed type, one would first create an instance
of the class and then invoke the generated decode method. To decode an instance of the Name class in the employee
sample, one would first create an instance of the class and then invoke the decode method:

j Smit hName = Nane()
j Smit hNane. decode(decbuf)

If successful, the attributes of the jSmithName instance will be populated with the decoded values.
A complete example showing how to invoke a decode method is as follows:
try:

Step 1: create a decode nessage buffer object to describe the
message to be decoded. This exanple will use a file input
streamto decode a nessage directly froma binary file..

decbuf = AsnlBer DecodeBuffer.fromfile(filenane)

Step 2: create an object of the generated type and invoke the
decode net hod. .

per sonnel Record = Personnel Record()
per sonnel Recor d. decode(decbuf)

Step 3: process the data

if trace:
print("Decode was successful ")
per sonnel Record. print _val ue("personnel Record", 0);

except Exception:
tb = traceback. format_exc()
print(tb)

48

Chapter 8. Generated JER (JSON) Decode
Methods

Recall from the "ASN.1 Type to Python Class Mappings' chapter that, for many ASN.1 types, a built-in Python type
or atype from the ASN1C Python run-timeis used to represent values of the ASN.1 type. A Python classis generated
for an ASN.1 type when either a) thereis no such Python type that can be used to represent the value, OR b) the ASN.1
type is assigned a name and its definition includes constraints, tags, or encoding instructions that alter the type's value
space or encoding from the basic ASN.1 type, such asfor Myl nt eger ::= | NTEGER(O. . 8)

For each ASN.1 type defined in an ASN.1 source file and for which a Python class is generated, a Python decode
method may be generated (when an appropriate method isinherited, it is not necessary to generate a decode method).

When a Python class is generated, it is generated to either represent the ASN.1 type (such as for SEQUENCE) or to
simply provide encode and decode methods. In the former case, the generated methods will be instance methods, while
inthe latter case the generated methods will be static methods. Naturally, decode methods which are instance methods
will decode into the object on which the decode method is invoked. Decode methods which are static methods will
return the result of decoding.

The Python JER run-time library provides decoding of basic ASN.1 types through the Asn1JsonDecodeBuf f er
class. The Asnl1JsonDecodeBuf f er class decodes data from any io.TextlOBase object.

If aPython classis NOT generated for agiven ASN.1 type, the methodsin Asn1JsonDecodeBuf f er can be used
to decode it. For example, no class will be generated for:

Myl nteger ::= | NTEGER
while a class with static methods will be generated for:

Myl nteger ::= | NTEGER(O. . 8)

Run-time and Generated Python Decode Meth-
ods

Three types of Python decode functions/methods are available for decoding different types of data. These are:

o Standard base run-time functions. These exist in the asnljson.py runtime module, in the
AsnlJsonDecodeBuf f er run-timeclass. Examplesaredecode_bi t st ri nganddecode_r eal . For some
types, which are closely aligned with the JSON representation, read* methods are used, such asr ead_bool ean
andr ead_st ri ng. These methods return a representation of the decoded value.

* Static methods in Python classes, such as for primitive types and SEQUENCE/ SET OF, as described above. The
method nameinthiscaseisj son_decode. The return value will be the Python class that represents values of the
ASN.1 type, whether that is a built-in class or from the ASN1C Python runtime.

* Instance methodsin Python classes for constructed types. Classes are generated for SEQUENCE, SET, and CHO CE
constructs. The decode method in this case decodes into the instance attributes which correspond to the ASN.1
elements defind in the ASN.1 types. The method nameisalsoj son_decode, asit wasin the static method case.
There isno return value.

The generated decode methods accept an Asnl1JsonDecodeBuf f er , thebuffer to decode from. Examplesignatures
are:

49

Generated JER (JSON) Decode Methods

@t ati cnet hod
def json_decode(dechuf):

def json_decode(sel f, decbuf):

All decode methods raise an exception if decoding fails.

Procedure for Calling Python JER Decode
Methods

The procedureto call a Python decode method for the different cases described aboveis basically the same. It involves
the following steps:

1. Create a decode message buffer object on the data to be decoded, from which the value will be decoded.
2. Invoke the decode method.

The first step is the creation of a decode message buffer object. An Asnl1JsonDecodeBuf f er can be created on
any io.TextlOBase object, or you can use the convenience class method f r om t ext to create one from a string of
JSON text. For example:

Create buffer on a JSON text file
decbuf = AsnlJsonDecodeBuffer(open(filename, 'r'))

Create a buffer on JSON text
decbuf = AsnlJsonDecodeBuffer.fromtext(json_text)

The decode method itself isthen invoked. In the simple case of a primitive type with no generated class, thisinvolves
invoking one of the methods defined in the decode buffer class to decode a primitive value. For example, to decode
an integer, do:

val ue = decbuf.read_int()

This would decode the content at the current decode buffer cursor position, which is expected to be a JSON number
representing an integer.

The procedure for invoking a static method is similar. The general form is <classname>.json_decode(decbuf). For
example, aclass named Enpl oyeeNumnber would be generated for the following definition:

Enpl oyeeNunber ::= | NTEGER(O. . 100)
To decode an employee number, do the following:
val ue = Enpl oyeeNunber.j son_decode(decbuf)

Thiswould decode the JSON number and check to ensure the constraint is satisfied. If successful, the decoded integer
value will assignedto val ue.

Finally, to invoke an instance method in a class generated for a constructed type, first create an instance of the class
and then invoke the generated decode method:

50

Generated JER (JSON) Decode Methods

j Sm t hName = Nane()
j Sm t hName. j son_decode(decbuf)

If successful, the attributes of the jSmithName instance will be populated with the decoded values.

A complete example showing how to invoke a decode method is as follows:

try:
Step 1: create a decode buffer. This exanple uses a file for input.
f = open(in_filename, 'r")
decbuf = AsnlJsonDecodeBuffer(f)

Step 2: create an object of the generated type and invoke the decode
met hod.

per sonnel Record = Personnel Record()
per sonnel Recor d. j son_decode(decbuf)

f.close()
per sonnel Record. print _val ue("personnel Record”, 0)
except Exception:

print(traceback. format_exc())
sys.exit(-1)

51

Chapter 9. Generated JER (JSON) Encode
Methods

For each ASN.1 production defined in an ASN.1 source file, a Python encode method may be generated. This method
will convert a populated variable of the given type into an encoded ASN.1 message.

Recall from the "ASN.1 Type to Python Class Mappings' chapter that, for many ASN.1 types, a built-in Python type
or atype from the ASN1C Python run-timeis used to represent values of the ASN.1 type. A Python classis generated
for an ASN.1 type when either a) thereis no such Python type that can be used to represent the value, OR b) the ASN.1
type is assigned a name and its definition includes constraints, tags, or encoding instructions that alter the type's value
space or encoding from the basic ASN.1 type, such asfor Myl nt eger ::= | NTEGER(O. . 8)

When a Python class is generated, it is generated to either represent the ASN.1 type (such as for SEQUENCE) or to
simply provide encode and decode methods. In the former case, the generated methods will be instance methods, while
in the latter case, the generated methods will be static methods.

The Python JER run-time library provides encoding of basic ASN.1 types through the Asn1JsonEncodeBuf f er
class. If aPython classis NOT generated for a given ASN.1 type, the methodsin AsnlJsonEncodeBuf f er can
be used to encode it. For example, no class will be generated for:

Myl nteger ::= | NTEGER
while a class with static methods will be generated for:

Myl nteger ::= | NTEGER(O. . 8)

Run-time and Generated Python Encode Meth-
ods

Three types of Python encode functions/methods are available for encoding different types of data. These are:

o Standard base run-time functions. These exist in the asnljson.py runtime module, in the
AsnlJsonEncodeBuf f er run-time class. Examples are encode_bi t stri ng and encode_r eal , but for
many types,writeorwrite_stringareal that is needed.

 Static methods in Python classes, such as for primitive types and SEQUENCE/ SET COF, as described above. The
method name in this caseisj son_encode.

* |Instance methodsin Python classes for constructed types. Classes are generated for SEQUENCE, SET, and CHO CE
constructs. The encode method in this case encodes the instance attributes which correspond to the ASN. 1 elements
defind in the ASN.1 types. The method nameisalsoj son_encode, asit wasin the static method case.

The encode methods do not have a return value and will raise an exception if the encoding fails.

Theencode methodson Asnl1JsonEncodeBuf f er haveavalue parameter for the value to be encoded, and in some
cases additional parameters (e.g. encode_oct et st ri ng hasaparameter for the base for the encoding, base). Of
course, these methods are invoked on an instance of Asn1JsonEncodeBuf f er.

The generated encode methods accept an Asn1JsonEncodeBuf f er , the buffer to encode to. Static methods addi-
tionally accept the value to be encoded. Some examples:

52

Generated JER (JSON) Encode Methods

@t ati cnet hod
def json_encode(enchuf, value):

def json_encode(sel f, encbuf):

Procedure for Calling Python JER Encode

The procedure to call a Python encode method for the different cases described aboveis basically the same. It involves
the following three steps:

1. Create an encode message buffer object into which the value will be encoded.
2. Invoke the encode method.

The first step is the creation of an encode message buffer object. This is done by simply creating an instance of the
AsnlJsonEncodeBuffer class:

Encode to a file
encbuf = AsnlJsonEncodeBuffer(fil ename="fil enane")

O, encode to a Text| OBase object, such as StringlO
encbuf = AsnlJsonEncodeBuffer(witer=text_io_object)

The encode method is then invoked. In the simple case of a primitive type with no generated class, this involves
invoking one of the methods defined in the encode buffer class to encode a primitive value. For example, to encode
an integer, one would do:

enchbuf.write(str(val ue))

The procedure for invoking a static method is similar. The general form is <classname>.json_encode(encbuf, value).
So, for example, a class named EmployeeNumber would be generated for the following definition:

Enpl oyeeNunber ::= | NTEGER(O. . 100)

To encode an employee number of 51, one would do the following:
Enpl oyeeNunber . j son_encode(encbuf, 51)

Thiswould verify the constraint was satisfied and encode the value 51.

Finally, to invoke the instance method in the class generated for a constructed type, one would first populate the
attribute values and then invoke the encode method. To encode an instance of the Name classin the employee sample,
one would first create an instance of the class, populate the attributes, and then invoke the encode method:

j Sm t hName = Nane()

j Sm t hName. gi venNane = ' John'
jSmthName.initial ="'F

j Sm thNane. fam | yName = ' Smith'
j Sm t hName. j son_encode(encbuf)

Thiswill encode the name.

A complete example showing how to invoke an encode method is as follows:

53

Generated JER (JSON) Encode Methods

Note: j SmthPR object was previously popul ated with data

try:
j Sm t hPR = Per sonnel Recor d()

Step 1: Create an encode buffer object
encbuf = AsnlJsonEncodeBuffer(fil ename=out _fil enamne)

Step 2: Invoke the encode nethod.
j Sm t hPR. j son_encode(encbuf)

enchuf . cl ose()
except Exception:

print(traceback. format_exc())
sys.exit(-1)

Chapter 10. Generated Sample Programs

The —writer and -reader options cause writer and reader sample programs to be generated.

The writer program contains sample code to populate and encode an instance of ASN.1 data. The main purpose isto
provide a code template to users for writing code to populate objects. Thisis quite useful to users because generated
objects can become very complex as the ASN.1 schemas become more complex. The writer code also shows users
how to instantiate an encode buffer object and how to use encode functions. The writer program writes the encoded
datato afile. If the writer program is generated by using both -writer and -gentest options, then the generated writer
program uses random data to populate the object(s).

The reader program on the other hand reads the encoded data from afile. It shows users how to use a decode buffer
object to decode data and populate the corresponding class object. On successful decode, it prints the decoded data
to standard output.

55

Chapter 11. Generated Print Methods

The -print or -genprint option causes printing methods to be generated. These functions can be used to print the
contents of variables of generated types. The printing methods are generated in each of the generated Python classes
that encapsulate multiple members.

Generated Python print_value Method Format
and Calling Parameters

The print_value method is provided in with the following signature:
def print_value(sel f, el emnane="<nane>", indent=0):

Theelem name argument is used to specify thetop-level variable name of theitem being printed. In the generated code
thisisdefaulted to the name of theiteminthe ASN.1, but inyour call to print_value() you can specify adifferent value.

Theindent argument is used to specify the indentation level for printing nested types. The generated code sets 0 asthe
default value for this argument, but you can specify a different value. Each indentation level results in an indentation
of 3 spaces in the printed output. So for example specifying 1 for this argument means the outermost lines will be
indented by 3 spaces, the next level 6 spaces, and so on. Allowing the value to default to O means the outermost lines
will not be indented, the next level will be indented by 3 spaces, and so on.

For example, the simplest call to print the personnel Record from the previous examples would be as follows:
per sonnel Record. print_val ue ();

The output would be formatted as follows:

Per sonnel Record ({
nane {
gi venNane = ' John'
initial ="'PF
fam | yName = 'Smth'
}
nunmber = 51
title = "Director’
dateOfH re = '19710917
nanmeCf Spouse {
gi venNane = ' Mary'
initial ="'T
fam | yName = 'Smth'

}
children[0] {

nane {
gi venNane = ' Ral ph’
initial ="'T
fam | yName = 'Smth'
}

dateOBirth = '19571111"

}
children[1] {

56

Generated Print Methods

nane {
gi venNane = ' Susan’
initial ="'B
fam | yName = ' Jones'
}

dateO'Birth = '19590717

Generated Python __str_ Method Format and
Calling Parameters

In addition to the print_value method described above, generated Python code al so includes the usual Python _ str
method. The presence of this method allows you to manipulate a generated object as a string. Using the personnel-
Record example from above:

print (personnel Recor d)

or:

prstring = str(personnel Record)
print(prstring)

The output of either of these print commands would be as follows:

nanme {
gi venNane = ' John'
initial ="'PF
fam | yName = 'Smth'
}
nunmber = 51
title = "Director’
dateOfH re = '19710917
nanmeCf Spouse {
gi venNane = ' Mary'
initial ="'T
fam | yName = 'Smth'

}
children[0] {
nanme {
gi venNane = ' Ral ph’
initial ="'T
fam | yName = 'Smth'
}
dateOfBirth = '19571111"
}
children[1] {

nane {

57

Generated Print Methods

gi venNane = ' Susan’
initial ="'B
fam | yName = ' Jones'

}
dateCfBirth = '19590717'

You can see that the output is virtually the same as the output from the print_value call, except there is no name
assigned to the entire grouping.

The__str_method is called by the generated print_value method, but it can also be called directly by you if desired.
Its signatureis as follows:

def _ str__ (self, elemnane=None, indent | evel =None):

The elem_name argument is a name to assign to the listing, and the indent_level argument controls the indentation of
the outermost level of the listing. Each indent level results in an indentation of 3 spaces. So, again using the person-
nel Record example, you can do this:

prstring = personnel Record. __str__("Thi sRecord", 1)
print(prstring)

The output of the print command would be as follows:

Thi sRecord {

nane {
gi venNane = ' John'
initial ="'PF
fam | yName = 'Smth'

}

nunber = 51

title = "Director’

dateOfH re = '19710917

nanmeCf Spouse {
gi venNane = ' Mary'
initial ="'T
fam | yName = 'Smth'

}
children[0] {

nane {
gi venNane = ' Ral ph’
initial ='T
fam | yName = 'Smth'
}
dateOfBirth = '19571111"
}
children[1] {
nane {
gi venNane = ' Susan’
initial = 'B

58

Generated Print Methods

fam | yName = ' Jones'

}
dateCfBirth = '19590717'

So in this case the output is al indented 3 spaces beyond the indentation from the previous examples, and the name
assigned to the listing is " ThisRecord".

59

Chapter 12. Generated Compare Methods

The -compare or -gencomparecommand line option causes an __eq method to be added to relevant generated
classes. The presence of this method allows the Pyton equality operatorsto be used to compare instances of generated
objects.

For example, if your program has two instances of the generated PersonnelRecord class, named prl and pr2, the two
instances can be compared for equality using thisline:

if prl == pr2:

60

Chapter 13. Generated Copy Methods

When - copy or - gencopyisspecifiedon the command line, ASN1C will generatecopy_val ue methodsin Python
code. These methods perform a deep copy.

Thecopy_val ue method is provided in the following form:

def copy_val ue(self):

61

	ASN1C
	Table of Contents
	Chapter 1. Overview of ASN1C for Python
	Chapter 2. ASN1C Command Line Interface (CLI)
	Running ASN1C
	ASN1C Python Command Line Options
	Compiler Configuration File
	ASN.1 Standard Revisions
	Compiler Error Reporting

	Chapter 3. ASN1C GUI Users Guide
	Quick Start
	Activating a License Key
	Creating a New Project

	Creating a Project
	Creating a New Project
	Editing a Project
	Opening a Project
	Saving a Project

	Editing Schemas
	Creating a New Schema File
	Editing a Schema File
	Deleting a Schema File

	Compiling
	Interface
	Editor
	Project Window
	ASN.1 Tree Window
	Error Log Window
	Project Settings
	Language tab
	Output tab
	Function Generation tab
	Constraints and Debugging tab
	Code Modifications tab
	Language-specific tab
	Build Options tab

	Chapter 4. Generated Python Source Code
	General Form of a Generated Python Source File
	Import Statements
	Simple Value Definitions
	Class Definitions
	Complex Value Definitions

	Chapter 5. ASN.1 Type to Python Class Mappings
	BIT STRING
	BIT STRINGs with named bits

	BOOLEAN
	INTEGER
	ENUMERATED
	OCTET STRING
	Character String Types
	Time String Types
	REAL
	OBJECT IDENTIFIER and RELATIVE-OID

	Chapter 6. Generated BER/DER Encode Methods
	Run-time and Generated Python Encode Methods
	Populating Generated Variables for Encoding
	Procedure for Calling Python BER Encode Methods

	Chapter 7. Generated BER/DER Decode Methods
	Run-time and Generated Python Decode Methods
	Procedure for Calling Python BER Decode Methods

	Chapter 8. Generated JER (JSON) Decode Methods
	Run-time and Generated Python Decode Methods
	Procedure for Calling Python JER Decode Methods

	Chapter 9. Generated JER (JSON) Encode Methods
	Run-time and Generated Python Encode Methods
	Procedure for Calling Python JER Encode

	Chapter 10. Generated Sample Programs
	Chapter 11. Generated Print Methods
	Generated Python print_value Method Format and Calling Parameters
	Generated Python __str__ Method Format and Calling Parameters

	Chapter 12. Generated Compare Methods
	Chapter 13. Generated Copy Methods

