
ASN2CSV
Version 2.1.0

Objective Systems, Inc. — July 2010

The software described in this document is furnished under a license agreement and may be used only in accordance
with the terms of this agreement.

Copyright Notice
Copyright ©1997–2010 Objective Systems, Inc. All rights reserved.
This document may be distributed in any form, electronic or otherwise, provided that it is distributed in its entirety and
that the copyright and this notice are included.

Author’s Contact Information
Comments, suggestions, and inquiries regarding this product may be submitted via electronic mail to info@obj-
sys.com.

iii

Table of Contents
Overview of ASN2CSV ... 1
Using ASN2CSV .. 3

Installation ... 3
Installing on a Windows System .. 3
Installing on a UNIX System ... 3

Command-line Options ... 3
Filtering Data .. 6

Type Mappings and Data Conversion .. 9
Mapping Top-Level Types ... 9
Mapping Simple Types .. 10
Mapping Complex Types ... 11

CHOICEs .. 12
Basic SEQUENCEs and SETs ... 12
Nested SEQUENCEs and SETs ... 13

Data Conversion ... 15
SEQUENCE OF in a SEQUENCE .. 15
Other Nested Data Types ... 16
OPTIONAL and DEFAULT Elements .. 16

iv

1

Overview of ASN2CSV
ASN2CSV is a command-line tool that translates ASN.1 data encoded in the Basic, Canonical, or
Distinguished Encoding Rules (BER/CER/DER) to a comma-separated text format (CSV) suitable
for use with spreadsheet tools or databases. Unlike some tools provided by Objective Systems,
ASN2CSV does not support messages encoded using the Packed Encoding Rules (PER).

ASN2CSV is envisioned primarily as a tool for working with call data records (CDRs) in a variety
of formats such as TAP3, SGSN, R12, CCN, SR13, and others. It therefore does not support more
advanced features of the ASN.1 standards such as two-phase decoding or information objects.

There exists no standard for converting ASN.1-encoded data to CSV. BER, CER, and DER data
are encoded in a hierarchical format that lends itself to translation to similar formats such as XML.
CSV, on the other hand, is flat data format: there are no structured types or children, and all data in
a CSV file are displayed on single lines. This complicates the translation of ASN.1 to CSV, since
structured data types like SEQUENCEs can be nested to an arbitrary depth or repeated an arbitrary
number of times.

While these limitations make conversion a difficult problem, CSV offers some advantages over
XML. CSV files are usually considerably smaller than XML, since no markup is necessary to
distinguish elements. Many databases import CSV data directly into tables, so no intermediate
transformations are required. CSV files are also easier to manipulate procedurally; no external
XML parsers are required to read the files, and many scripting languages have built-in facilities
for working with comma-delimited data.

This document describes some of the unique challenges of transforming ASN.1-encoded data to
CSV and the approach taken by ASN2CSV to solve those problems.

2

3

Using ASN2CSV

Installation
ASN2CSV comes packaged as an executable installation program for Windows or a .tar.gz
archive for UNIX systems. The package is comprised of the following directory tree:

 asn2csv_v21x
 |
 +-asn1specs
 |
 +-bin
 |
 +-doc
 |
 +-sample

The bin subdirectory contains the asn2csv executable. The asn1specs directory contains specifi-
cations used by the sample programs in the sample directory. This document is found in the doc
directory.

Installing on a Windows System
To install ASN2CSV on a Windows system, simply double-click the executable installer program.
Selecting the default installation options will install ASN2CSV in c:\asn2csv_v21x.

There is no graphical user interface available for use with ASN2CSV; the program is intended to
be run from the command-line, either as a stand-alone application or as part of a batch process for
converting BER-encoded data to CSV.

Installing on a UNIX System
To install ASN2CSV on a UNIX system, simply unzip and untar the .tar.gz archive. The program
may be unpacked in any directory in which the user has permissions. No installation program is
available to install ASN2CSV to /usr/local or other common installation paths.

There is no graphical user interface available for use with ASN2CSV; the program is intended to
be run from the command-line, either as a stand-alone application or as part of a batch process for
converting BER-encoded data to CSV.

Command-line Options
Invoking asn2csv will show a usage message that contains the command-line options. The usage
statement should look like this:

Command-line Options

4

 ASN2CSV, Version 2.1.x
 ASN.1 to CSV translation tool
 Copyright (c) 2004-2010 Objective Systems, Inc. All Rights Reserved.

 Usage: asn2csv <filename> options

 <filename> ASN.1 message file name

 options:
 -schema <filename> ASN.1 definition file name(s)
 -pdu <typename> Message PDU type name
 -o <filename> Output XML filename
 -nobcd Disable BCD conversion
 -noopentype Disable automatic open type decoding
 -paddingbyte <hexbyte> Additional padding byte
 -rootElement <element> Root Element Name
 -bitsfmt <hex|bin> BIT STRING content output format
 -inputFileType <binary|hextext|base64>
 Format of data in input file
 -s <separator> Field separator
 -minLevel <num> Set the minimum output depth
 -maxLevel <num> Set the maximum output depth
 -q Turn off all output except errors

The following table summarizes the command-line options. Required elements are listed first.

Option Arguments Description

<filename> <filename> is the name of the input BER-encod-
ed message data to be decoded. This element is
required.

-schema <filename> This option is required. Us must specify
a schema to apply to the input message.
ASN2CSV converts the input schema items in-
to a set of named columns and cannot name the
columns without an input specification.

-bitsfmt <hex | bin> -bitsfmt may be used to specify how BIT STRING
items are formatted. By default they are ex-
pressed as hexadecimal strings; use bin to ex-
press them as binary strings instead.

-inputFileType <binary | hextext | base64> -inputFileType may be used to tell ASN2CSV
how the input data are formatted. By default
ASN2CSV will assume that the input data are
binary, but it can also decode hexadecimal or
base64 encoded data. Whitespace in the input is
ignored when hextext is specified.

-maxLevel <level> By default, all entries will be dumped to the out-
put file. Deeply-nested types may result in ex-
cessive output, however. The -maxLevel switch

Command-line Options

5

Option Arguments Description
causes ASN2CSV to stop outputting data after
<level> levels have been processed.

-minLevel <level> Similar to the -maxLevel option, the -minLevel
option will cause ASN2CSV to skip outputting
top-level data types <level> levels deep.

-nobcd This option disables the conversion of BCD da-
ta types in the output. It is used for the common
TBCD-String data type. TBCD digits are encod-
ed in swapped byte order and use a 0xf digit to
terminate the string. When this option is select-
ed, the input data are treated as OCTET STRINGs.

-noopentype This option disables the conversion of open
types in the CSV output. Typically

-paddingbyte <hexbyte> <hexbyte> is the hexadecimal value of a padding
byte that may appear in the input message. Call
data records (CDRs) are commonly continuous-
ly dumped to files by telephony equipment. If no
information is available, the records are padding,
normally by 0x00 or 0xFF bytes. The default
padding byte is 0x00. <hexbyte> may be format-
ted with or without a 0x prefix.

-pdu <typename> <typename> is the name of the PDU data type to
be decoded. This option is necessary when the
top-level data type is ambiguous.

-q This option causes ASN2CSV to operate in a
"quiet" mode more suitable for batch processes.
Informational messages are limited and only er-
ror output will be reported.

-s <separator> By default, ASN2CSV assumes the record sep-
arator will be a comma. When this conflicts with
output data (for example, a field may consist
of City, State), users may use the -s switch
to specify a different separator such as a tab or
pipe. Enclosing the separator in quotation marks
is necessary when using a tab or other whites-
pace character.

Filtering Data

6

Filtering Data
As explained in the following chapter, Type Mappings and Data Conversion, the use of nested
and repeating data types can result in output files with large numbers of columns and rows. The
-minLevel and -maxLevel command-line options are used to create vertical slices from an input
data file.

The following example specification demonstrates how these options work to reduce the output:

 A ::= SEQUENCE {
 a INTEGER,
 b SEQUENCE OF SEQUENCE {
 bb VisibleString,
 cc CHOICE {
 aaa INTEGER,
 bbb SEQUENCE OF BOOLEAN
 }
 }
 }

Without using any command-line filtering options, the output columns will look like this:

 a,bb,aaa,bbb

The innermost SEQUENCE OF type will cause a full tuple to be added to the CSV file for each message.
If the bbb element were repeated ten times, the outer elements would be duplicated ten times for
each BOOLEAN.

If, in the same message, the outer SEQUENCE OF (that is, the b element) were repeated three times,
the outer INTEGER, a, would be repeated 30 times. This kind of duplication may be unnecessary
depending on the content of interest, so the minLevel and maxLevel options may be used to control
the output.

The duplication of data at the outer level may be controlled using the minLevel option. If for ex-
ample, the minimum level were set to one (-minLevel 1), the outer INTEGER would be eliminated:

 bb,aaa,bbb

The duplication of data in the inner levels may be controlled using the maxLevel option. If, for
example, the maxLevel were set to one (-maxLevel 1), the inner CHOICE would be eliminated:

 a,bb

By combining the options, we can reduce the output to a single column of data (-minLevel 1 -
maxLevel 1):

Filtering Data

7

 bb

In this way the data of interest may be isolated in the input messages and the output considerably
reduced.

8

9

Type Mappings and Data Conversion
Converting ASN.1 types to CSV output is not always very straightforward. It is akin to normalizing
a database, except that there is only one table. For complex types, it is necessary to duplicate
information across several rows.

No standards currently exist for converting ASN.1 to CSV. This chapter describes how ASN2CSV
has attempted to answer the problems that naturally arise from trying to compress nested BER data
to a flat data file.

We may divide conversion into roughly two steps: collecting the column headers and then out-
putting the column data. Header information comes from parsing the input specification, while the
column data are found in the actual encoded content. This documentation is primarily concerned
with how the column headers are collected.

Mapping Top-Level Types
PDU data types are stored in their own CSV files, usually of the form
ModuleName_ProductionName.csv. There are three main top-level data types of interest:

• SEQUENCE / SEQUENCE OF

• SET / SET OF

• CHOICE

For all intents and purposes, the list types (SEQUENCE and SET OF) are the same as the unit types.
The content is repeated when needed on multiple rows of the CSV file.

Simple types may be used as top-level data types, but in practice this is rare. Translation in this
case proceeds as described in the following sections.

As an example, the following SEQUENCE would be dumped to MyModule_Type1.csv:

 MyModule DEFINITIONS ::= BEGIN

 Type1 ::= SEQUENCE {
 ...
 }

 END

If the input file type had two such SEQUENCEs, the resulting files would be MyModule_Type1.csv and
MyModule_Type2.csv.

Mapping Simple Types

10

When a CHOICE is used as the top-level data type, the typename for the CHOICE is ignored and the
files are generated using the typenames in the CHOICE. For example, the following specification
would generate the same output as the one with two top-level SEQUENCEs named Type1 and Type2:

 MyModule DEFINITIONS AUTOMATIC TAGS ::= BEGIN

 Type1 ::= SEQUENCE {
 ...
 }

 Type2 ::= SEQUENCE {
 ...
 }

 PDU ::= CHOICE {
 t1 Type1,
 t2 Type2
 }

When a SEQUENCE or SET OF type is used as the top level, the underlying unit type is referenced
instead. For example, the following ASN.1 specification would create the file MyModule_Type1.csv:

 MyModule DEFINITIONS ::= BEGIN

 Type1 ::= SEQUENCE {
 ...
 }

 PDU ::= SEQUENCE OF Type1

 END

In this case, the PDU type carries no extra information for outputting the data; the contents of Type1
are outputted on separate lines.

One of the implications of this kind of translation is that the message structure cannot be recon-
structed from the output data files. A top-level data type of a CHOICE, SEQUENCE, or SEQUENCE OF may
result in exactly the same output files, even though the bytes of the message may differ. Such ambi-
guity should not cause any problems since a specification is required for decoding the ASN.1 data.

Mapping Simple Types
Simple types in ASN.1 consist of the following:

• BOOLEAN

• INTEGER

• BIT STRING

Mapping Complex Types

11

• OCTET STRING

• NULL

• OBJECT IDENTIFIER

• REAL

• ENUMERATED

• UTF8String

• RELATIVE-OID

• NumericString

• PrintableString

• TeletexString

• VideotexString

• IA5String

• UTCTime

• GeneralizedTime

• GraphicString

• VisibleString

• GeneralString

Each simple type is mapped to a corresponding string representation of the input data. This is a
relatively straightforward conversion. Of special note, we use the BOOLEAN values "TRUE" (for
any hex octet not equal to 0x00) and "FALSE" (for any hex octet equal to 0x00). NULL values are
outputted simply as "NULL."

Simple type mappings require no extra logic for output. Their textual representations are generally
quite straightforward. Mapping complex types, however, is more difficult.

Mapping Complex Types
Complex types of interest include the following:

• SEQUENCE

CHOICEs

12

• SEQUENCE OF

• SET

• SET OF

• CHOICE

Complex types by their nature are more difficult to transform than simple types. They can be self-
referential and nested, which complicates transformation. CSV is a flat file format that cannot
properly represent nested types in a fixed number of columns, so care must be taken in transforming
the data to ensure that it is properly represented. This process is very similar to a first-order database
normalization.

CHOICEs
As explained in the previous section (Mapping Top-level Types), the CHOICE at the top level is
effectively ignored: the elements of the CHOICE are used to generate the output of a file instead. In
the routine case where the CHOICE is contained in another data type or stands alone, the mapping
is slightly different.

Take for example the following CHOICE:

 C ::= CHOICE {
 i INTEGER,
 b BOOLEAN,
 s UTF8String
 }

The elements contained in the CHOICE will be used as the column names. The name of the CHOICE
itself will be ignored. The resulting column names from this example would look like this:

 i,b,s

Basic SEQUENCEs and SETs
This section describes the transformation of SEQUENCE data types. The SET data type is analogous
to the SEQUENCE and so bears no extra discussion. As described in previous sections, the SEQUENCE
OF and SET OF types are likewise equivalent.

The only significant difference between SEQUENCE and SET is that elements may be encoded in any
order in a SET. ASN2CSV will order SET elements in the order they appear in the specification.

The SEQUENCEs considered in this section contain only simple types to simplify the collection of
header data. Other cases are considered in the next sections.

Nested SEQUENCEs and SETs

13

Take, for example, the following SEQUENCE specification:

 S ::= SEQUENCE {
 i INTEGER
 s UTF8String,
 b BIT STRING
 }

Each element of the SEQUENCE will be represented by an item in the output CSV file as follows:

 i,s,b

Nested SEQUENCEs and SETs
When a SEQUENCE or SET contains other complex data types, it is said to be nested. Types may be
nested to an arbitrary depth in ASN.1, so the resulting output can be extremely verbose in complex
specifications. Moreover, these nested types can be repeating.

The following sections will describe how ASN2CSV handles nested (and occasionally patholog-
ical) specifications. The general rule is that ASN2CSV will do its best to flatten the structure of
nested data types.

For all intents and purposes, a SEQUENCE is exactly the same as a SET to ASN2CSV; the two types
are used interchangeably in the following sections.

SEQUENCE in a SEQUENCE

One form of nested data occurs when a SEQUENCE type contains another, as in the following example:

 A ::= SEQUENCE {
 a INTEGER,
 b SEQUENCE { aa INTEGER, bb BOOLEAN },
 c BIT STRING
 }

In this case, the following columns would be generated in the output CSV:

 a,aa,bb,c

ASN2CSV removes all references to the SEQUENCE named b. Instead, the inner data (aa and bb) is
collapsed into the main data type. It is as though we have instead provided the following specifi-
cation:

 A ::= SEQUENCE {

Nested SEQUENCEs and SETs

14

 a INTEGER,
 aa INTEGER,
 bb BOOLEAN,
 b BIT STRING
 }

While the BER encoding of the two specifications is different, they are functionally equivalent to
ASN2CSV.

CHOICE in a SEQUENCE

When a CHOICE appears in a SEQUENCE, each of the elements in the CHOICE is represented in the output
CSV file, even though only one will be selected in any given message.

For example, take the following specification:

 A ::= SEQUENCE {
 a INTEGER,
 b CHOICE { aa INTEGER, bb BOOLEAN },
 c BIT STRING
 }

The resulting columns will appear as though the CHOICE were actually a SEQUENCE:

 a,aa,bb,c

SEQUENCE OF in a SEQUENCE

The last data type to consider is the SEQUENCE OF. This is handled very much like a SEQUENCE: the
SEQUENCE OF is ignored and its contents are represented for the column headers as in the following
example:

 A ::= SEQUENCE {
 a INTEGER,
 b SEQUENCE OF INTEGER,
 c BIT STRING
 }

In this case, the columns will be straightforwardly translated:

 a,b,c

It is possible that the repeated data type is not primitive, but rather complex. For example:

Data Conversion

15

 A ::= SEQUENCE {
 a INTEGER,
 b SEQUENCE OF SEQUENCE {
 aa INTEGER,
 bb BOOLEAN
 },
 c BIT STRING
 }

In this case, the innermost data are represented in the output CSV files, but the actual SEQUENCE
OF will be ignored as before:

 a,aa,bb,c

The exact same columns would be represented if a CHOICE were used instead of a SEQUENCE. In the
final analysis, ASN2CSV will always do its best to collapse nested data types, drilling down to the
innermost data to collect the column headers.

Data Conversion
Having collected column headers for the output CSV, the second and final step is to output the
actual data from the decoded BER message. Fortunately this is considerably more straightforward
than collapsing the data structures in the specification.

The main case to consider is that in which data types are repeated: when a SEQUENCE OF is nested
inside of a SEQUENCE. Some brief comments follow for other nested data types.

SEQUENCE OF in a SEQUENCE
Take for example the simple case previously seen:

 A ::= SEQUENCE {
 a INTEGER,
 b SEQUENCE OF INTEGER,
 c BIT STRING
 }

Let us assume for sake of argument that there are two integers in the inner SEQUENCE OF. In this
case, the resulting CSV file will have two rows in addition to the header row.

The common data, columns a and c, will be repeated, while the repeated element b will change.
For example:

 a,b,c
 1,97823789324,010010

Other Nested Data Types

16

 1,18927481,010010

The data represented by the SEQUENCE OF are different from row to row, but the common elements
are duplicated. While this example is very simple, it is possible to nest data types to an arbitrary
depth, and the representation of columns and their data can be quite large. In pathological instances,
the CSV output may be larger than the output generated by other tools like ASN2XML.

Other Nested Data Types
The other nested data types, SEQUENCE and CHOICE, are relatively trivial to convert once the columns
have been assembled as described in the previous section. A single row may be used to output a
message without repeating types.

The CHOICE data type bears some explanation. The following specification is the same used in the
previous section:

 A ::= SEQUENCE {
 a INTEGER,
 b CHOICE { aa INTEGER, bb BOOLEAN },
 c BIT STRING
 }

Some example output data follows:

 a,aa,bb,c
 1,,FALSE,101010
 2,137,,100001

The output lines will contain data in either the aa or bb but not both. Only the selected data should
be represented in the output line.

OPTIONAL and DEFAULT Elements
Optional primitive elements that are missing in an input message will result in a blank entry in the
output CSV file. Take, for example, the following specification:

 A ::= SEQUENCE {
 a INTEGER,
 b UTF8String OPTIONAL,
 c BIT STRING
 }

This might result in the following output:

OPTIONAL and DEFAULT Elements

17

 a,b,c
 1,test string,100100
 2,,100101
 3,another test,100100

In this example, the second message does not contain the optional UTF8String element, so it is
omitted from the output.

Elements marked DEFAULT are handled differently in the output. If an element is missing in the input
specification, the default value is copied into the output CSV file. The following specification is
used to demonstrate:

 A ::= SEQUENCE {
 a INTEGER,
 b UTF8String DEFAULT "test",
 c BIT STRING
 }

In this case, we might have the following output:

 a,b,c
 1,test string,100100
 2,test,100101
 3,another test,100100

Like the previous example, the input data omitted the default UTF8String. Instead of a blank entry,
however, the output CSV data contains test.

18

