
ASN1C Java Runtime Benchmarks

Ethan Metsger*

We discuss here some benchmarks for Objective Systems’ ASN1C Java run-
time. Examples when possible are taken from real-life applications; when
such examples are not available, we provide examples using the sample pro-
grams provided with an ASN1C installation.

Disclaimer

is document is intended for informational purposes only and does not represent any
guarantee of performance. e data contained in this document may not be consistent
with the latest versions of ASN1C or newer hardware.

1 Introduction

is document provides benchmarking information for the ASN1C Java Runtime. ese
figures are provided for BER and PER unless otherwise noted. It should be noted from the
outset that benchmarking any ASN.1 application is difficult and depends just as much on
the complexity of the specification and chosen encoding rules as it does on the computer
hardware on which the tests are performed. Performance will also vary with the code
generation options selected by the customer; a reasonable set of defaults is chosen for the
examples provided.
Benchmarking is further complicated by the metrics used to assess the application.

Some options will optimize throughput while hurting latency or vice versa; other op-
tions may limit memory use at the expense of speed. e metric used in this report is the
relative number of records per second that may be encoded or decoded.
*emetsger@obj-sys.com

1



2 Test System

e system used to test the soware has the following relevant specifications:

• Intel Core2 Duo Processor (4300) clocked at 1.80GHz

• 3GB RAM

• Linux 10.04, kernel 2.6.32-26-generic

• Java version 1.6.0_22-b04

• ASN1C 6.3.4

To calculate the time involved in encoding and decoding, typical Java API calls were used
to get the system time.

3 BER Benchmarks

e BER benchmarks are taken from custom projects developed by Objective Systems.
ese results use data provided by our customers to provide estimates of records processed
per second as well as bytes per second. e laer metric is particularly significant as it
demonstrates the affect of message size and complexity on throughput.

3.1 Ericsson R12

e Ericsson R12 specification results in approximately 360 generated files. ese were
collected into an API and slightly modified for a customer to permit serializing some of
the data to CSV and XML. e results of some sample data are given below:

Test # # of records Decoding, s1 µdec, r/s ~µdec, b/s

1 19177 6.985 2745 293k
2 19222 6.334 3034 323k
3 19594 6.912 2835 296k
4 19603 6.930 2828 295k
5 19598 6.776 2892 302k

1During decode, records are converted to CSV.

2



3.2 Ericsson IN SCP3

e Ericsson SCP3 specification results in approximately 25 generated files. ese were
collected into an API and slightly modified for a customer to permit serializing some of
the data to XML. e results of some sample data are given below:

Test # # of records Encoding, s2 µenc, r/s µenc, b/s

1 8738 2.41 3625 870k
2 9806 2.30 4263 890k
3 4568 1.91 2391 1098k

3.3 TAP3 Batch Sample

For comparison purposes, we provide figures from the TAP3 Batch sample program. ere
are 120 generated files in the TAP3Batch sample. Results from running the sample Writer
and Reader are below:

Test # # of records Encoding, s Decoding, s µenc, r/s µenc, b/s µdec, r/s µdec, b/s

1 10000 6.218 49.255 1608 4070k 203 513k
2 10000 6.431 50.621 1555 3930k 198 500k
3 10000 6.342 49.361 1577 3990k 203 512k

e reference test here shows two things:

1. e JVM optimizes encoding when done in a naively repetitive way.

2. Message size will certainly affect decoding speeds.

To the first point, we note that the encoding is exceptionally fast—roughly four MB per
second. is is not particularly surprising, since the data encoded are identical through
the loop, and we are effectively concatenating the same encoding to itself 10,000 times.
Decoding is not parallel, however, because of the nature of BER encodings (i. e., back-to-
front).
To the second point, we note that the performance in terms of records per second is

significantly worse than in Ericsson R12. On the other hand, the number of bytes per

2is includes decoding from BER and serialization to XML.

3



second is nearly double. is is explained by the fact that the relative message size in
the TAP3 specification is an order of magnitude larger, and that TAP3 is roughly half as
complex (as measured by the number of generated files). e average message size in the
R12 case is about 105 bytes, while the average message size in TAP3 is over two kilobytes.

We may conclude this section, then, by noting that the complexity of the specification
and message size greatly influence the encoding and decoding speed. It is important to
look at a variety of metrics to properly evaluate the performance of the runtime library.

4 PER Benchmarks

e PER benchmarks are taken from sample programs distributed with ASN1C.
PER presents complexity that is not present in BER, being a bit-packed encoding. How-

ever, PER messages are usually significantly smaller than their BER counterparts. is
tradeoff oen results in improved performance.

4.1 NBAP

is test uses a modified NBAP ASN.1 file and so presents less complexity than we might
find in the regular 3GPP specifications. ere are 82 generated files in this sample. Results
from the test run are below:

Test # # of records Encoding, s Decoding, s µenc, r/s µenc, b/s µdec, r/s µdec, b/s

1 10000 1.092 1.248 9158 339k 8013 296k
2 10000 0.932 1.252 10729 397k 7987 296k
3 10000 0.940 1.236 10638 394k 8091 299k

Here we see the relative performance in the number of records increase substantially,
but the overall throughput remains relatively modest (in keeping with the Ericsson R12
sample program). is is hardly surprising, since PER encodings are more processor-
intensive.
All NBAP encodings are octet-aligned; tests were run using table constraint encoding

and decoding. Each message was 37 bytes long.

4



4.2 Employee

e employee sample program was chosen for its simplicity (seven files) and to show the
relative differences between aligned and unaligned encodings. Following are encoding
results:

Test # # of records Aligned, s Unaligned, s µa, r/s µa, b/s µu, r/s µu, b/s

1 10000 2.804 2.772 3566 336k 3607 303k
2 10000 2.920 2.714 3424 321k 3686 309k
3 10000 2.824 2.775 3541 332k 3603 303k

Using unaligned encoding costs a lile in terms of throughput, as the additional com-
plexity required to encode the unaligned variant decreases output. Overall encoding time
is consistently a lile faster, however, reflecting the difference in overall output size (in
this case, from 94 bytes in the aligned variant to 84 bytes in the unaligned variant). ese
messages were over twice the size of the NBAP messages, which seems to mitigate what-
ever performance increase we obtain by a simpler specification.
Following are decoding results:

Test # # of records Aligned, s Unaligned, s µa, r/s µa, b/s µu, r/s µu, b/s

1 10000 2.632 2.596 3799 357k 3852 324k
2 10000 2.648 2.556 3776 355k 3912 329k
3 10000 2.592 2.540 3858 363k 3937 331k

ese results are consistent with encoding. e throughput decreases in decoding as
we switch from aligned to unaligned, but the overall time spent in decoding is also a lile
shorter. As noted in the encoding case, the unaligned encoding is about 10.5% smaller than
the aligned encoding; this size reduction leads on average to a 8.5% decrease in throughput
and a 2% decrease in decoding time (which isn’t really significant).
ese results will naturally vary from application to application; in some cases, the un-

aligned variant may decrease the message size more, and in some cases less. e selection
is usually made based on the constraints of the devices that use those messages. So for ex-
ample, the Radio Resource Control (RRC) schemas by convention are encoded with UPER,
while NBAP and other elements of the 3GPP specification universe are usually encoded
in aligned PER.

5



5 Conclusion

As with any benchmarking analysis, there is room for some criticism in this one. It serves
as a beginning, however, for showing the relative difficulty in assessing the efficiencies of
ASN.1 applications. Performance is largely dependent on features such as:

• encoding rules selected3

• specification complexity

• message size

Selecting metrics can also be a difficult problem. Looking at the number of records en-
coded and decoded per second can be deceiving and should be tempered with a compari-
son to the relative throughput.
In general, we may conclude from the results that BER is more sensitive to the complex-

ity of the specification than is PER, whose bit-aligned philosophy correlates with greater
demand on the processor. PER encodings are by nature significantly smaller than BER,
however, which can help to mitigate the increased processor load. In cases where an a
priori decision can be made about what encoding to use, other variables than performance
should be considered (for example, target device constraints).

3And their variants. BER performance will vary based on whether indefinite-length or definite-length
messaging is used; PER performance will vary based on the variant.

6


	1 Introduction
	2 Test System
	3 BER Benchmarks
	3.1 Ericsson R12
	3.2 Ericsson IN SCP3
	3.3 TAP3 Batch Sample

	4 PER Benchmarks
	4.1 NBAP
	4.2 Employee

	5 Conclusion

