
XBinder
XML Schema Compiler

Version 2.6
Java/C# Users Guide

Reference Manual

Objective Systems, Inc. — July 2018

The software described in this document is furnished under a license agreement and may be used only in accor-
dance with the terms of this agreement.

Copyright Notice
Copyright ©1997–2018 Objective Systems, Inc. All rights reserved.
This document may be distributed in any form, electronic or otherwise, provided that it is distributed in its entirety

and that the copyright and this notice are included.

Author’s Contact Information
Comments, suggestions, and inquiries regarding XBinder may be submitted via electronic mail to info@obj-

sys.com.

iii

Table of Contents
1. XBinder Overview .. 1
2. Using XBinder .. 2

Running XBinder from the Command-line .. 2
Building and Running Generated Code ... 7

Java ... 7
C# ... 8

Getting Started ... 8
PurchaseOrder Sample ... 8
Using your own XML Schema .. 11

3. Generated Java and C# Source Code .. 12
Schema Classes .. 12
Type Classes .. 13

Simple Type Classes ... 13
Complex Type Classes .. 13

Group Classes .. 13
Document Classes ... 13
C# Namespaces & Java Packages .. 14

4. XSD Simple Type Mappings ... 15
Atomic, User-Defined types .. 16
Lists ... 17
Unions .. 18
Enumeration ... 19

5. XSD Complex Type Mappings .. 21
Properties .. 21

Atomic properties ... 21
Indexed properties ... 22
List properties .. 23

Attributes .. 23
Content Models .. 24

Generated Class Hierarchy ... 24
Empty Content ... 24
Simple Content ... 25
Groups .. 26
Complex Content .. 30

Named Groups ... 35
Element Substitution Groups ... 36
Nillable Elements ... 36

6. Configuration File ... 38
Binding Language ... 38

Binding Declaration .. 38
Version Attribute .. 38
Configuration File Language Overview ... 39
Global Bindings: <bindings> .. 39
<schemaBindings> Declaration ... 40
<nodeBindings> Declaration ... 42
<typemap> Declaration ... 43

Advanced XML Names Transformation .. 43
XML Numeric Values Format Specification .. 44

Formatting xsd:double/float Values .. 44
Formatting xsd:decimal Values .. 48

Configuration File Example .. 49

XBinder Java/C# User's Guide

iv

7. Support For Other Java Platforms .. 51
Android ... 51

For users of Android with XBinder prior to version 2.2 ... 51
Working with the Android RSS Sample .. 51
Redistribution ... 52
Known Limitations ... 52

Java Micro Edition .. 52
Redistribution ... 53
Known Limitations ... 53

Java SE 1.4 ... 53
Known Limitations ... 53

8. Miscellany ... 54
Canonical XML .. 54
Building Java Runtimes ... 54

1

Chapter 1. XBinder Overview
The XBinder code generation tool translates an XML Schema Definition (XSD) source file into computer language C#
or Java source files. These source files contain an application programming interface (API) that allows programmatic
data to be encoded to XML format and decoded to programmatic variables. Each variable is of a type that corresponds
to a type, element, or attribute defined within the XML schema document.

Each XSD source file results in the generation of C#/Java classes that represent each of the XSD types and global
elements contained within the XSD source file. These classes contain encode, decode, and utility functions. A print
utility function may be generated to print the object tree.

These generated classes, along with the XBinder run-time, provide a complete package for working with XML encoded
data.

The diagram below shows the flow that accomplishes the translation from an XML schema definition to Java or C#
source code:

2

Chapter 2. Using XBinder

Running XBinder from the Command-line
The XBinder distribution contains a command-line compiler executable as well as a graphical user interface (GUI)
wizard that can aid in the specification of compiler options. This section describes how to run the command-line
version; the operation of the GUI is described in the online help files built into the wizard.

To test if XBinder was successfully installed, enter xbinder with no parameters as follows (note: if you have not
updated your PATH variable, you will need to enter the full pathname):

 xbinder

You should observe the following display (or something similar):

XBinder Compiler, Version 2.6.0
Copyright (c) 2002-2018 Objective Systems, Inc. All Rights Reserved.

Usage: xbinder <filename> options

 <filename> XML schema or WSDL source file name(s).
 Multiple filenames may be specified.
 * and ? wildcards are allowed.

 Language options (choose only one):
 -c Generate C code
 -c++ or -cpp Generate C++ code
 -c# or -csharp Generate C# code
 -java Generate Java code

 Basic options:
 -xml Generate XML encode/decode functions
 -config <file> Specify schema bindings file.
 -o <directory> Output file directory
 -I <directory> Import file directory
 -all Compile all dependent files
 -warnings Output compiler warning messages
 -compat <version> Generate code compatible with previous
 compiler version. <version> format is
 x.x (for example, 1.0)

 Options to reduce amount of generated code:
 -lax Generate code that does lax error checking
 -noderiv Do not generate special derived type code

 Options to alter generated code:
 -namespace Specify a namespace prefix for all generated items
 -nodatestamp Do not put date stamp in header
 -nomixed Do not generate string structure for mixed content
 -elemCasing <value> Set element name case to lower/upper
 -typeCasing <value> Set type name case to lower/upper

 Options for the generation of additional code:

Using XBinder

3

 -genPrint or
 -print Generate print functions

 C/C++ basic options:
 -dom Generate DOM encode/decode functions (C only)
 -json Generate JSON encode/decode functions (C only)
 -sax Generate SAX-based decoders (default is pull-parser)
 -modularize Handle included schemas as separate modules
 -nodecode Do not generate decode functions
 -noencode Do not generate encode functions
 -trace Add trace diag msgs to generated code

 C/C++ options to reduce amount of generated code:
 -compact Generate compact code
 -nocopy Do not generate copy methods (C++ only)
 -noheader Do not add code to encode XML header (<? xml ...)
 -noxmlns Do not generate code to support XML namespaces

 C/C++ options to alter generated code:
 -borland Generate special code for Borland C++ compiler
 -c14n Generate C14N format encode functions
 -cppns <ns> Add given C++ namespace to generated code (C++ only)
 -cppext <ext> Set file extension for generated C++ source files
 -derivModel <model> Set the derivation model to extended/interface
 -enumchoice Generate enum type for type selector for choice types
 -fragments Generate code to encode XML fragments
 (start element, contents, end element)
 -initlists Generate code that initializes lists to default
 (when possible)
 -noEncDefault Do not add schema default/fixed values to XML instance
 -noDefaultNs Do not use default namespace in XML instance
 -noNamedBits Do not generate named bits for EnumList,
 use regular list instead
 -numDateTime Use numeric structures for all date/time types
 -pdu <element> Designate element to be a PDU
 -project <prj_name> Set project name
 -soap, -soap12 Generate code to format/parse SOAP v1.2 messages
 -soap11 Generate code to format/parse SOAP v1.1 messages
 -static Generate code that uses static memory
 (when possible, C only)
 -strict Generate code that does strict syntax checking
 -useNSPfx Use XSD namespace prefixes in C/C++ code
 -useflteq Use float equality functions to ignore rounding
 errors in floating-point comparisons
 -use-qt [QList | QLinkedList | QVector | QVarLengthArray]
 Use Qt classes for strings and lists, using the given
 Qt collection class as the default for lists. Default
 is QLinkedList.
 -usestl Use C++ Standard Template Library (STL)
 -noenumvars Do not generate fields using generated enum types;
 revert to prior behavior (generate OSUINT16 instead)
 -w64 Generate Visual Studio project files for a 64-bit
 XBinder installation
 -x64 Generate code using 64-bit integers for lengths on

Using XBinder

4

 64-bit systems

 C/C++ options for the generation of additional code:
 -getset Generate C++ getters and setters
 -genWriter Generate writer test program
 -genReader Generate reader test program
 -genFree Generate memory free functions (C only)
 -genFactory Generate Factory functions
 -genRWTest Generate read/write test program
 -genStubs Generate SOAP client stub functions from WSDL
 -genSkel Generate SOAP skeleton server program from WSDL
 -genClient Generate web service client test program from WSDL
 -genSSLClient Generate a secure HTTP client test program using OpenSSL
 -genSSLStubs Generate secure HTTP stub functions using OpenSSL
 -genTest [<xmlfile>] Generate test code. If XML instance provided,
 this will be used; otherwise, random data
 -genValid Generate validation functions
 -usePDU <element> Use PDU for writer/reader test program
 -w32 Use with '-genMake' to generate Windows NMAKE file
 (default = GNU)

 C/C++ options for makefile or project generation:
 -genMake Generate makefile
 -genMakeLib [<libname>] Generate code in makefile to put all objects
 into a static library
 -genMakeDLL [<dllname>] Generate code in makefile to build shared object
 -genvcproj [version] Generate Visual Studio C/C++ project files
 [version] is 2017, 2015, 2013, 2012, 2010, 2008, 2005, 2003,
 vc6 (Windows only)
 -makeopts <dynamiclib | staticlib | multithreaded>
 Use compilation options for dynamic, static, and multithreaded
 libraries.

 C/C++ compression options:
 -zip Add code to generated reader/writer to use
 standard gzip compression (requires zlib install)

 C# extra options:
 -csfile <name> Specifies one .cs file for all generated code
 Set <name> to '*.cs' for one .cs file per .xsd file
 -csnsname <name> Name for C# namespace
 -csnspfx <prefix> C# namespace names will be this prefix, followed by
 schema name
 -genMake Generate makefile
 -genWriter Generate writer test program
 -genReader Generate reader test program
 -genvcproj <version> Generate Visual Studio C# project files
 <version> is 2017, 2015, 2013, 2012, 2010, 2008, 2005 (Windows only)
 -nocsgetset Generate properties only, no getter/setter methods
 -usePDU <element> Use PDU for writer/reader test program

 Java extra options:
 -pkgname <name> Name for Java package
 -pkgpfx <prefix> Java package names will be this prefix, followed by

Using XBinder

5

 schema name
 -genMake Generate Apache Ant buildfile (build.xml)
 -genWriter Generate writer test program
 -genReader Generate reader test program
 -usePDU <element> Use PDU for writer/reader test program
 -xpp Use XmlPull API rather than StAX (StAX is default)

To use the compiler, at a minimum, a single XSD source file must be provided along with at least one set of encoding
rules and a target output language. The current version of XBinder supports the generation of C (-c option), C++ (-
cpp option), C# (-c# or -csharp) and Java (-java) source code. For C# and Java, XBinder supports the generation of
code to encode/decode XML (-xml).

The source file specification can be a full pathname or only what is necessary to qualify the file. If directory information
is not provided, the user's current default directory is assumed. Multiple source filenames may be specified on the
command line to compile a set of files. The wildcard characters ‘*’ and ‘?’ are also allowed in source filenames (for
example, the command ‘xbinder *.xsd -c -xml’ will compile all XSD files in the current working directory).

The source file specification can be a full pathname or only what is necessary to qualify the file. If directory information
is not provided, the user's current default directory is assumed. Multiple source filenames may be specified on the
command line to compile a set of files. The wildcard characters ‘*’ and ‘?’ are also allowed in source filenames (for
example, the command ‘xbinder *.xsd -c -xml’ will compile all XSD files in the current working directory).

The following table lists all of the command line options (those relevant to C# or Java) in alphabetical order and what
they are used for:

Option Argument Description

-all None Generate code for all dependent files in a given compilation. This in-
cludes the main XSD files specified on the command line as well as
all imported and included schema files.

-csfile *.cs or a specific .cs
file name

If valued with *.cs, indicates that XBinder is to generate one .cs file
for each .xsd file processed. If valued with a specific .cs file name,
indicates that XBinder is to generate one .cs file to hold all code. Do
not specify any folder information in the -csfile value; use the -o qual-
ifier instead.

-c# -csharp None Generate C# code

-compat <version> Generate code that is compatible with an older version of the XBinder
compiler. The format of the version number is "n.n" (for example,
1.0). As of XBinder 2.0, this has no meaning for C# or Java code
generation, but it may be applicable in the future.

-config <filename> This option is used to specify the name of a file containing configu-
ration information for the source file being parsed. This is similar to
the ‘binding schema’ used with some other XML data binding appli-
cations

-csnsname <name> Provides a C# namespace name. All classes will be generated into this
namespace.

-csnspfx <prefix> Provides a prefix for C# namespace names. Each class will be gener-
ated into a namespace named <prefix>.<schema>, where <schema> is
based on the name of the XSD file from which the class was generated.

-elemCasing lower or upper This option is used to change the case of the first letter in element
names in the generated code from what is specified in the XSD file.
This option is typically used when the XSD file contains type, ele-
ment, and/or attribute names that are the same. It provides a way to

Using XBinder

6

Option Argument Description

disambiguate names in the generated code. Typically, element names
are set to lower case.

lower is the default for C# and Java

See -typeCasing for changing the case of type names.

-genMake None For C#, XBinder will generate a makefile.

For Java, XBinder will generate an Apache Ant buildfile.

-genPrint None Generate print utility functions. Print functions are debug functions
that allow the contents of generated type variables to be written to any
given output stream.

-genReader None Generate a sample reader program

-genvcproj <version> (optional) For C# only, XBinder will generate a Visual Studio project file.

<version> specifies the version of Visual Studio (2017, 2015, 2013,
2012, 2010, 2008, or 2005). Not specifying a version will cause the
compiler to generate a project for Visual Studio 2015.

-genWriter None Generate a sample writer program

-I <directory> This option is used to specify a directory that will be searched for XSD
<import> and <include> items. Multiple –I qualifiers can be used to
specify multiple directories to search.

-lax None This option causes decode/validation functions to be generated that
contain less schema-validation error checking code. This can be useful
for working with XML documents that are not completely valid with
regards to the schema.

-modularize None This option is used when XSD <include> directives are included in
a schema to tell the processor to put the generated code in separate
output files based on the definitions in the included files. The default
behavior if this is not used is to include all of the code in the main file
that is including the definitions. This can only be used if the included
files can be successfully compiled on their own (i.e. are not dependent
on definitions from the parent module).

-namespace <prefix> Add the given prefix to all class names. This makes it possible to dis-
ambiguate items with the same names that are in different schemas.
Note that the -csnspfx (for C#) or -pkgpfx (for Java) can be used to
derive C# namespaces or Java package names from the name of the
XSD file.

-nocsgetset None Do not generate getter and setter methods for C#. The default behav-
ior, if this option isn't present, is to generate both getter/setter meth-
ods and properties. If this option is specified, only properties will be
generated.

-nodatestamp None Do not insert a date stamp in the header of each generated file. This
can be useful when using a source control system to prevent identical
source files from appearing different.

-noderiv None Suppress generation of extra code for run-time derived type handling.
This code makes it possible to decode complexContent types using
xsi:type declarations.

Using XBinder

7

Option Argument Description

-nomixed None Do not generate a special structure to hold mixed content items. The
generated code will more closely match the schema layout. However,
mixed content will not be supported.

-o <directory> This option is used to specify the name of a directory to which all of
the generated files will be written.

-pkgname <name> Provides a Java package name. All classes will be generated into this
package.

-pkgpfx <prefix> Provides a prefix for package names. Each class will be generated into
a package named <prefix>.<schema>, where <schema> is based on
the name of the XSD file from which the class was generated.

-print None see -genPrint

-typeCasing lower or upper This option is used to change the case of the first letter in generated
class names from what is specified in the XSD file. This option is typ-
ically used when the XSD file contains type, element, and/or attribute
names that are the same. It provides a way to disambiguate the names
in the generated code.

The default for C# and Java is upper.

See -elemCasing for changing the case of element names.

-usePDU name of element When generating sample code (example -genReader -genWriter), this
option tells XBinder which global element should be handled by the
sample code.

Building and Running Generated Code

Java
There are three main components that you need:

1. Java compiler and runtime. JSE 5+ is required.

2. XBinder Java Runtime (xbrt.jar). This needs to be in your classpath when compiling, and at runtime.

3. StAX API and StAX implementation. The API must be available during compilation; both the API and the imple-
mentation must be available at runtime. Note that JSE 6+ includes the StAX API and a StAX implementation.

Obtaining StAX API

If you are using JSE 5, you will need to obtain the StAX API. It is available at http://dist.codehaus.org/stax/jars/ stax-
api-1.0.1.jar. As of JSE6, the StAX API is part of the JSE platform; you do not need to obtain it separately.

Be sure to include stax-api-1.0.1.jar in your classpath at compilation and run-time.

Obtaining StAX Implementation (Woodstox)

If you are using JSE 5, you must obtain an implementation of StAX. We recommend Woodstox 3.9.2 or higher. Even
if you are using JSE 6, you may want to use Woodstox, as this is the implementation we are currently using internally.

You can obtain Woodstox at http://woodstox.codehaus.org/.

Using XBinder

8

To use Woodstox, simply include the downloaded JAR in your classpath (this works even if you are using JSE 6).

C#
There are two main components that you need:

1. Version 2.0 or higher of the Microsoft .NET Framework software development kit. You will need the full software
development kit, not just the redistributable package. The .NET Framework software development kit includes
the C# compiler (csc.exe) and a set of classes that are used at runtime during decode and encode operations. The
Xbinder C# functionality was tested with version 2.0 of the .NET Framework.

2. XBinder C# Runtime (xbrt.dll and xbrt.snk). The DLL needs to be referenced when compiling and in a location
where it can be found at runtime. If you copy the DLL to another location before compiling against it, you will also
need to copy the .snk file. At runtime one way to ensure that the file is found is to copy xbrt.dll into the same folder
as the .exe that is referencing it. Another way is to add xbrt.dll to the global assembly cache via the gacutil.exe
program. Other mechanisms might also be available via application configuration files; consult the appropriate
Microsoft documentation for the development tool you're using.

Obtaining the Microsoft .NET Framework

You can obtain the Microsoft .NET Framework via the download center on the Microsoft web site
(www.microsoft.com). Depending on the version you select, the words “software development kit” may or may not
be specified with the selection on the web site. But the words “redistributable package” are consistently used for kits
that contain just runtime components. You will want the software development kit, not the redistributable package.

If Microsoft Visual Studio 2005 or higher is installed on the machine where you will be using the Xbinder C# compiler,
then you already have at least version 2.0 of the Microsoft .NET Framework. The Microsoft .NET Framework is
typically installed into the \WINDOWS\Microsoft.NET\Framework folder; you can probably check this location to
see if you already have it. You can also search for csc.exe to see if you already have the Microsoft C# compiler.

Getting Started

PurchaseOrder Sample
You will find C# and Java PurchaseOrder sample programs in csharp/samples/PurchaseOrder and java/samples/Pur-
chaseOrder, respectively.

The sample consists of the following:

• Sample XML schema (po.xsd)

• Sample Writer program (Writer.cs/Writer.java)

• Sample Reader program (Reader.cs/Reader.java)

When you build the sample, XBinder is used to compile the sample schema and the C#/Java compiler is used to
compile the writer and reader programs. When XBinder compiles the schema, it generates classes that serve both as
data structures, modeling the schema data, and as encoder-decoders, encoding and decoding the data structures to/
from XML. The reader and writer programs depend on these generated classes.

To build the C# sample program, execute the makefile in the PurchaseOrder folder via the “nmake” command.

To build the Java sample program, execute the build.bat or build.sh script

Using XBinder

9

Writer

The Writer program creates an XML file. Its code populates the data structures generated by XBinder, and encodes
this data to XML using the generated encode method. The Reader program decodes an XML file, using the generated
decode method, into the data structures generated by XBinder. It then prints this data to standard output. By default,
the writer encodes to message.xml, and the reader decodes from message.xml. To run the writer for Java, use the
writer.bat or writer.sh script; for C# run writer.exe.

 PurchaseOrder_CC root = new PurchaseOrder_CC();

This code creates the document codec, which contains convenience methods for encoding/decoding an entire XML
document. You can think of it as representing the document as a whole and containing a single element (purchase-
Order).

 PurchaseOrderType purchaseOrder = new PurchaseOrderType();
 root.setPurchaseOrder(purchaseOrder);

This code creates an object of the purchaseOrder element's type (PurchaseOrderType), and supplies it to the root as
being the data for the purchaseOrder element.

Java

 XBXmlEncoder encoder;
 encoder = new XBXmlEncoder(bos, charset);
 root.encodeDocument(encoder);
 encoder.close();

C#:

 XBXmlEncoder encoder;
 encoder = new XBXmlEncoder(fout, charset);
 root.encodeDocument(encoder);
 encoder.Close();

This code performs the encoding. After all of the data structures are populated, we create encoder1, supplying it with
an OutputStream and a character set. We then pass the encoder to the PurchaseOrder_CC encodeDocument method,
which encodes the data into a purchaseOrder element. Lastly, we close the encoder. 1

Controlling XML Namespaces for encoding

The PurchaseOrder sample doesn't involve XML namespaces. However, we can still look at the generated code to see
the facilities that XBinder provides for controlling XML namespaces.

Class _po includes the following declaration:

 public static XBXmlNamespace[] namespaceContext = {};

Class _po is a "schema class" (generated for each schema you compile). The namespaceContext field is used to
hold namespace declarations that you may want to use, derived from the XSD you compiled. This sample doesn't use
XML namespaces, so the array is empty. For schemas that do use namespaces, you can manipulate this array, and use
the following code to tell the encoder to encode those namespaces with the document root:

1We use "encoder" to refer to two different things, but the context should make it clear what is being referenced. Both PurchaseOrder_CC and
XBXmlEncoder are encoders, but they work at different levels of abstraction. PurchaseOrder_CC (and the other classes generated by XBinder)
encode/decode specific XML structures, while XBXmlEncoder provides generic XML encoding services. Here, we are obviously referring to the
XBXmlEncoder object.

Using XBinder

10

 encoder.setNamespaces(_po.namespaceContext);

XBinder will try to guess whether the schema's target namespace should be encoded as the default namespace, or using
a namespace prefix. This choice will be reflected in the contents of the namespaceContext array. Whether this choice
is used or not depends on whether you change the contents of the array and/or actually invoke setNamespaces
prior to invoking encodeDocument.

Another way to control namespaces, assuming your root element is of a complex type, is to use a method provid-
ed in class XBComplexType. All classes generated for complex types ultimately derive from XBComplexType.
(In our sample, PurchaseOrderType is a complex type and so it extends XBComplexType) The method is
XBComplexType.addNamespace:

 public void addNamespace(String nsUri, String prefix)

Reader

The Reader program decodes an XML file using the generated classes, which provide both the data structure to decode
into, as well as the logic for decoding. It then prints the decoded information to the standard output.

The reader program first creates a source to read from:

C#:

 XmlTextReader reader = null;
 try
 {
 FileStream fin = new FileStream(inputFile, FileMode.Open, FileAccess.Read);
 reader = new XmlTextReader(fin);

Java:

 XMLStreamReader2 reader = null;
 try {
 XMLInputFactory inputFactory = XMLInputFactory.newInstance();
 reader = inputFactory.createXMLStreamReader(inputFile,
 new BufferedInputStream(
 new FileInputStream(inputFile)));

Next, as with the Writer, an instance of PurchaseOrder_CC is created. Then, decodeDocument is invoked:

 PurchaseOrder_CC root = new PurchaseOrder_CC();

 root.decodeDocument(reader);

Finally, the decoded data is printed to an output stream (pw or System.Console.Out):

Java:

 root.print(pw, "", 0);

C#:

 root.print(System.Console.Out, "", 0);

The print method invoked above is generated when the -print option is given to XBinder (as is done in the sample
build script). The information is printed in terms of generated fields, rather than XML elements.

2XMLStreamReader is defined as part of the StAX API. As of JSE 6, this API is a part of the JSE. It was defined under JSR-173.

Using XBinder

11

Using your own XML Schema
To use you own XML Schema, you will basically do the same things you saw in the PurchaseOrder sample. Keep
in mind the following:

• For every global element, an *_CC class is created. This will provide you with encodeDocument, decodeDocument
methods.

• Using the _CC classes is not required. They are fairly simple and you could use them as a basis for creating something
else that meets your particular needs.

• The XBXmlEncoder class encodes to an underlying stream. You control where the data goes by configuring the
stream you provide.

• Under Java, decoding requires StAX. See the section on Building and Running Generated Code for information
about StAX.

12

Chapter 3. Generated Java and C# Source
Code

Schema Classes
For each schema being compiled, a schema class is generated. It will be named _<schema>, where <schema> comes
from the .xsd file name.

Here is an abbreviated example:

Java:

 public class _myschema {
 public static XBXmlNamespace[] namespaceContext = {
 new XBXmlNamespace("", "http://obj-sys.com/example")};

 //declare constants for the schema's ns and preferred prefix
 public static final String NS_URI = "http://obj-sys.com/example";
 public static final String NS_PREFIX = "osys";

 public static XBDoubleFormat defaultDoubleFmt = new XBDoubleFormat();
 public static XBDoubleFormat globalFloatNumFmt = new XBDoubleFormat(...);
 public static XBDoubleFormat numFmt0 = new XBDoubleFormat(...);

 public _myschema() {
 }
 }

C#:

 public class _myschema {
 public static XBXmlNamespace[] namespaceContext = {
 new XBXmlNamespace("", "http://obj-sys.com/example")};

 //declare constants for the schema's ns and preferred prefix
 public static readonly String NS_URI = "http://obj-sys.com/example";
 public static readonly String NS_PREFIX = "osys";

 public static XBDoubleFormat defaultDoubleFmt = new XBDoubleFormat();
 public static XBDoubleFormat globalFloatNumFmt = new XBDoubleFormat(...);
 public static XBDoubleFormat numFmt0 = new XBDoubleFormat(...);

 public _myschema() {
 }
 }

This schema class demonstrates the following features:

1. namespaceContext: represents prefix-namespace mappings you might want to initialize the encoder with. These
are derived from the compiled schema.

2. NS_URI, NS_PREFIX: referenced in generated code when encoding elements from this schema

Generated Java and C# Source Code

13

3. *Fmt* fields: referenced in generated code for formatting numeric values during encoding. These are the result of
specifying format options in the configuration file.

Type Classes
A type class will be generated for most types defined in your schema. The exception to this is an anonymous simple
type, in which case the necessary code is generated "in-line" at the point of use. There are two categories of type
classes, based on the two categories of XSD types: simple and complex

Simple Type Classes
Simple types represent a single value, and XBinder represents their data using predefined C# or Java types (e.g. int,
String; see XSD Simple Type Mappings). The simple type classes provide static encode/decode methods and are used
only for encoding/decoding; they do not contain the simple type value. You should not have to interact with the simple
type classes.

Enumerations

A simple type with enumeration facets is an exception to the above. In this case, for Java an enum class is generated,
and the enum constants are used to represent the data. For C# a class resembling a Java enum class is generated that
can wrap a possible value for the enum.

Complex Type Classes
Complex types combine attributes with a content model. XBinder generates a class for each complex type. Both
attributes and the content model are represented using properties. So, unlike simple type classes, instances of complex
type classes actually represent the corresponding data.

For additional information, see the section XSD Complex Type Mappings.

Group Classes
In XSD, a group is a collection of particles (elements, element wildcards, and other groups). A group may be nested
inside another group. Also, named groups may be defined. In both cases, XBinder generates a group class. A group
class is basically a complex type class, except that there are no attributes to create properties for.

Document Classes
For each global element, a document control class is generated. These are named <elem name>_CC.

The document class contains a value that represents the global element, along with encodeDocument and decodeDoc-
ument methods.

Here is an abbreviated example:

Java:

 public class MyDoubleElement_CC implements XBDocumentCodec
 {
 private XBContext _xbContext = new XBContext();
 ...
 public double getValue() {...}

Generated Java and C# Source Code

14

 public void setValue(double value) {...}

 public void decodeDocument(XMLStreamReader reader) {...}

 public void encodeDocument(XBXmlEncoder encoder) {...}

 ...
 }

C#:

 public class MyDoubleElement_CC : XBDocumentCodec
 {
 private XBContext _xbContext = new XBContext();
 ...
 public double getValue() {...}

 public void setValue(double value) {...}

 public void decodeDocument(XMLStreamReader reader) {...}

 public void encodeDocument(XBXmlEncoder encoder) {...}

 ...
 }

To use the namespace prefixes generated for your schema, do the following before calling encodeDocument (or, create
and pass your own array):

 encoder.setNamespaces(_myschema.namespaceContext);

Features to note are:

1. get/set methods for the element's value. In this example, the element was of simple type double.

2. The _xbContext field is used during encoding/decoding; you don't need to create an XBContext object when you
use the decodeDocument or encodeDocument methods.

C# Namespaces & Java Packages
There are two options for specifying the namespace/package that classes will be generated into:

1. 1.-csnsname (C#) or -pkgname (Java): This option lets you specify a single namespace/package that all classes will
be generated into. This option is a good alternative when your schemas do not have overlapping type names.

2. 1.-csnspfx (C#) or -pkgpfx (Java): This option causes the classes for each schema to be generated into a
separate namespace/package, each of which will be a child of the namespace/package specified with the op-
tion. For example, given "-csnspfx com.test", classes from myschema.xsd will be in namespace
com.test.myschema

TIP: Choose your namespace/package name carefully. Avoid using a name whose first piece will be used as a name in
your schema. For example, using test as a package name when there are elements (and thus generated fields) named
test will likely cause C#/Java compilation errors (the field name will hide the namespace/package name).

15

Chapter 4. XSD Simple Type Mappings
The following table describes the mappings for the XSD built-in simple types.

XSD Built-In Type C# Type Java Type

anyURI string string

base64Binary com.objsys.xbinder.runtime.XBByteArray com.objsys.xbinder.runtime.XBByteArray

boolean bool boolean

byte sbyte byte

date string javax.xml.datatype.XMLGregorianCalendar

dateTime string javax.xml.datatype.XMLGregorianCalendar

decimal decimal java.math.BigDecimal

double double double

duration com.objsys.xbinder.runtime.XBDuration javax.xml.datatype.Duration

ENTITIES string[] string[]

ENTITY string string

float float float

gDay string javax.xml.datatype.XMLGregorianCalendar

gMonth string javax.xml.datatype.XMLGregorianCalendar

gMonthDay string javax.xml.datatype.XMLGregorianCalendar

gYear string javax.xml.datatype.XMLGregorianCalendar

gYearMonth string javax.xml.datatype.XMLGregorianCalendar

hexBinary string com.objsys.xbinder.runtime.XBByteArray

ID string string

IDREF string string

IDREFS string[] String[]

integer int int

int int int

language string string

long long long

Name string string

NCName string string

negativeInteger int int

NMTOKEN string string

NMTOKENS string[] string[]

nonNegativeInteger uint int

nonPositiveInteger int int

normalizedString string string

positiveInteger uint int

short short short

XSD Simple Type Mappings

16

XSD Built-In Type C# Type Java Type

string string string

time string javax.xml.datatype.XMLGregorianCalendar

token string String

unsignedByte byte short

unsignedShort ushort int

unsignedInt uint long

unsignedLong ulong java.math.BigInteger

Atomic, User-Defined types
Atomic, user-defined types are specified in XSD using <xsd:simpleType> with <xsd:restriction>. The purpose is to
further restrict some facet of the base type.

These XSD types are frequently defined anonymously. In that case, XBinder will generate validation code where
the anonymous type is being used. If a named type is defined, XBinder will generate a corresponding class with
static encode/decode methods. Validation logic will be generated into the encode/decode methods. In both cases,
values of these types are represented according to the type mappings given in the table above (with the exception of
enumerations; see Enumeration, below).

Example XSD: define an integer-based type that ranges from 27 to 65:

 <xsd:simpleType name="TwentySevenSixtyFive">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="27"/>
 <xsd:maxInclusive value="65"/>
 </xsd:restriction>
 </xsd:simpleType>

C#:

 public class TwentySevenSixtyFive
 {
 public static readonly byte _MIN = 27;
 public static readonly byte _MAX = 65;

 //constructor
 private TwentySevenSixtyFive() {}

 public static String encode(byte value, XBContext xbContext) {...}

 public static byte decode(String text, XBContext xbContext) {...}
 }

Java:

 public class TwentySevenSixtyFive
 {
 public static final byte _MIN = 27;
 public static final byte _MAX = 65;

XSD Simple Type Mappings

17

 //constructor
 private TwentySevenSixtyFive() {}

 public static String encode(byte value, XBContext xbContext) {...}

 public static byte decode(String text, XBContext xbContext) {...}
 }

The generate encode and decode methods validate the min/max facets, as well as converting between a value repre-
sentation (byte) and lexical representation (String). As mentioned above, the encode/decode methods in this case are
static; the class simply provides coding services and does not represent values of the type it supports.

Note that XBinder chose to represent values of this type using byte. Given the value range, XBinder determined this is
the most appropriate representation. This selection can be overridden using a configuration file. As a quick example,
to use a short instead of a byte in the above example, you would use the following configuration file:

 <bindings version="1.0">
 <schemaBindings schemaLocation="example.xsd">
 <nodeBindings node=
 "/xsd:schema/xsd:simpleType[@name="TwentySevenSixtyFive"]">
 <javatype>int16</javatype>
 <cstype>int16</cstype>
 </nodeBindings>
 </schemaBindings>
 </bindings>

• This example uses the node attribute on the nodeBindings element; this is the most selective way to specify a node.

• Note that the configuration file is itself an XML file. In the node attribute, quotation marks must be escaped using
"

For more information on using configuration files, see the section "Configuration File".

Lists
A list type is represented using an array. During decoding, the array will be created to be the exact size needed for
the number of items in the list. During encoding, the entire array will be encoded into the list, which means that you
must correctly size the array when populating it.

Example XSD:

 <xsd:simpleType name="IntList" >
 <xsd:list itemType="xsd:int" />
 </xsd:simpleType>

C# and Java:

 {
 //constructor
 private IntList() {}

 public static String encode(int[] value, XBContext xbContext) {...}

XSD Simple Type Mappings

18

 public static int[] decode(String text, XBContext xbContext) {...}
 }

Just as with the atomic types, a list type is represented using an array; the generated class only provides static coding
methods.

Unions
Handling for a union depends on the member types. If the member types all map to the same Java type, then that type
will be used. Otherwise, XBinder will use String. If any memberType is a list type, XBinder will use an array of the
appropriate type (as just described).

Example XSD:

 <xsd:simpleType name="positiveFloat">
 <xsd:restriction base="xsd:float">
 <xsd:minExclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="NegIntPosFloat">
 <xsd:union memberTypes="xsd:negativeInteger positiveFloat"/>
 </xsd:simpleType>

C#:

 public class NegIntPosFloat
 {
 public static readonly int _member1MAX = -1;

 //constructor
 private NegIntPosFloat() {}

 public static String encode(string value, XBContext xbContext) {...}

 public static string decode(String text, XBContext xbContext) {...}
 }

Java:

 public class NegIntPosFloat
 {
 public static final int _member1MAX = -1;

 //constructor
 private NegIntPosFloat() {}

 public static String encode(String value, XBContext xbContext) {...}

 public static String decode(String text, XBContext xbContext) {...}
 }

The example defines a type that combines an integer-based type and a float-based type. XBinder would represent each
of the memberTypes using a different C#/Java type, so it uses String as the representation.

XSD Simple Type Mappings

19

Enumeration
If a type is restricted using an enumeration, an enum class is generated.

Example XSD:

 <xsd:element name="IntegerElement">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:enumeration value="-2" />
 <xsd:enumeration value="2" />
 <xsd:enumeration value="4" />
 <xsd:enumeration value="6" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

Beginning of resulting Java class:

public enum IntegerElement_ELEM
{
 x_2("-2"),
 x2("2"),
 x4("4"),
 x6("6");
 ...

Beginning of resulting C# class:

public class IntegerElement_ELEM
{
 public static IntegerElement_ELEM x_2 = new IntegerElement_ELEM("-2");
 public static IntegerElement_ELEM x2 = new IntegerElement_ELEM("2");
 public static IntegerElement_ELEM x4 = new IntegerElement_ELEM("4");
 public static IntegerElement_ELEM x6 = new IntegerElement_ELEM("6");
 ...

Common code:

 //fields for lexical and actual value
 private String lexicalValue;
 private int actualValue;

 //constructor
 private IntegerElement_ELEM(String lexicalValue) {...}

 public int valueOf() {...}

 public static IntegerElement_ELEM validate(int value) {...}

 public String toString() {...}

 public static String encode(IntegerElement_ELEM value, XBContext xbContext)
 {...}

XSD Simple Type Mappings

20

 public static IntegerElement_ELEM decode(String text, XBContext xbContext)
 {...}
 }

Features to note are:

1. Each instance of the enum class contains both its lexical and actual value. This means no formatting is required
when encoding, and no parsing is necessary when asking for the actual value.

2. The valueOf method returns the actual value (e.g. the int value represented by the enum).

3. The validate method returns the enum constant that corresponds to the given actual value.

4. The toString method returns the lexical representation.

5. The encode/decode methods are invoked by other generated code, wherever the restricted type is used.

The naming for the enum constants follows the following rules:

1. We begin with the enumeration value as the name.

2. If an enumeration identifier consists of whitespace only (for example, enumeration value=""), the special name
BLANK is used.

3. Other special names are used for other single punctuation mark identifiers (for example, '+' = PLUS).

4. If, after applying these rules, the name still has a non-alphabetic start character, the character 'x' is prepended. (Thus,
x2 for "2" in the example above).

5. All invalid C#/Java identifier characters are replaced with underscores (_) within the name. (Thus, x_2 for "-2"
in the example above).

21

Chapter 5. XSD Complex Type Mappings
XSD complex types involve attributes, attribute wildcards (xsd:anyAttribute), elements, groups of elements, element
wildcards (xsd:any), and character data.

For each complex type, a complex type class is generated. All of the above XSD features represent data, and all of
this data is modeled in the complex type class using properties.

Properties
There are three kinds of properties generated: atomic properties, indexed properties, and list properties.

Atomic properties
An atomic property has a either a primitive type or a non-array, non-list, reference type.

Suppose that field is an optional property of primitive type (int, in this example). The following methods are generated:

Java:

 public int getField() {...}

 //only defined because field is optional
 public boolean isSetField() {...}

 public void setField(int value) {...}

 //unsets field
 public void setField() {...}

C#:

 public int getField() {...}

 //only defined because field is optional
 public bool isSetField() {...}

 public void setField(int value) {...}

 //unsets field public void setField() {...}

Note that a required, primitive-typed atomic property is always considered set, because the underlying field always
has some value.

Now, suppose that fieldis an optional property of some reference type, MyComplexType. The following methods are
generated:

Java:

 public MyComplexType getField() {...}

XSD Complex Type Mappings

22

 //always defined because default value for reference type is null
 public boolean isSetField() {...}

 //pass null to unsetfield
 public void setField(MyComplexType value) {...}

C#:

 public MyComplexType getField() {...}

 //always defined because default value for reference type is null
 public bool isSetField() {...}

 //pass null to unset field
 public void setField(MyComplexType value) {...}

Indexed properties
An indexed property is represented using an array. If the property represents a list type, then the entire array is used.
Otherwise, only a portion of the array is used, and the length of the property is managed internally. This is transparent
to you.

Suppose that fieldis an indexed property of type T. The methods generated are:

Java:

 //returns a copy of the array, a new array having length getFieldLength()
 public T[] getField() {...}

 public T getField(int index) {...}

 public int getFieldLength() {...}

 public boolean isSetField() {...}

 //assigns field, making a copy of the given array
 public void setField(T[] value) {...}

 public void setField(int index, T value) {...}

 //assigns field to a new array of the given length
 public void setField(int length) {...}

C#:

 //returns a copy of the array, a new array having length getFieldLength()
 public T[] getField() {...}

 public T getField(int index) {...}

XSD Complex Type Mappings

23

 public int getFieldLength() {...}

 public bool isSetField() {...}

 //assigns field, making a copy of the given array
 public void setField(T[] value) {...}

 public void setField(int index, T value) {...}

 //assigns field to a new array of the given length
 public void setField(int length) {...}

List properties
A list property is represented using a List or IList.

Suppose that field is a list property of type T (if T is a primitive type, then let T be the corresponding Java wrapper
class or C# underlying struct). The following methods are generated:

Java:

 public List<T> getField() {...}

 public boolean isSetField() {...}

 public void unsetField()1 {...}

C#:

 public IList<T> getField() {...}

 public bool isSetField() {...}

 public void unsetField()1 {...}

XBinder's design for indexed and list properties takes its lead from JAXB's design. All mutation of the array and list
can be under the control of the generated code, which might allow for earlier validation in the future.

Attributes
Attributes of simple, atomic types are modeled as atomic properties. Attributes of simple, list types (including unions
having a memberType that is a list) are modeled as indexed properties.

During encoding, you must have set any required attributes. Attributes which are optional may be set or not. Attributes
which are optional and have a fixed or default value must be set if you want the fixed or default value to actually be
encoded. If an attribute has a fixed value, and it is set, it must be set to the fixed value.

Attribute wildcards are modeled as list properties of type
com.objsys.xbinder.runtime.XBAttributeBase.

1Since List properties do not have a setField method, it seemed odd to define either a 0- or 1-argument setField method, just to perform the function
 on "unsetting" the property. Thus, we have the unsetField method.

XSD Complex Type Mappings

24

Content Models
XSD supports a few content models:

1. empty: no child elements or child character data allowed

2. simple: No child elements are allowed; the character data must conform to a given simple type

3. non-mixed, group: The group describes the elements that are allowed; no character data may occur outside the
child elements.

4. mixed, group: The group describes the elements that are allowed; character data may be mixed in, occurring outside
of child elements.

Generated Class Hierarchy
At the root of the class hierarchy for all complex type classes is class
com.objsys.xbinder.runtime.XBComplexType. This class contains a list of namespace-prefix mappings.
This list represents the namespace declarations that will be/were encoded/decoded.

More details on the generated class hierarchy are discussed under the topics of extension and restriction.

Empty Content
A complex type with an empty content model may have attributes, but no other content. In this case, there will only
be properties generated from attributes.

XSD:

 <xsd:complexType name="Empty">
 <xsd:attribute name="attrint" type="xsd:integer"/>
 <!-- other attributes -->
 </xsd:complexType>

Generated code:

Java:

 public class Empty extends XBComplexType
 {
 ...
 //attribute methods

 public int getAttrint() {...}

 public boolean isSetAttrint() {...}

 public void setAttrint(int value) {...}

 public void setAttrint() {...}

 [property methods for other attributes here]

XSD Complex Type Mappings

25

 ...
 }

C#:

 public class Empty : XBComplexType
 {
 ...
 //attribute methods

 public int getAttrint() {...}

 public bool isSetAttrint() {...}

 public void setAttrint(int value) {...}

 public void setAttrint() {...}

 [property methods for other attributes here]
 ...
 }

Simple Content
This model forces the character data to conform to a simple type. Thus, a single value represents the content. XBinder
models this by defining a property called "value". The value property will be defined just the same as would be done
for an attribute of the same simple type.

A complex type with simple content may be defined in one of three ways:

1. extend a simple type

2. extend another complex type with simple content

3. restrict another complex type with simple content 2

XSD:

 <xsd:complexType name="TypeName">
 <xsd:simpleContent>
 <xsd:extension base="BaseType">
 <!-- attributes declared here -->
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

Resulting code if BaseTypeis a simple type, mapped to a primitive type PT:

Java:

2XBinder does not currently support simpleContent restrictions that require a simpleType child, which includes restrictions on complex types with
a mixed, emptiable particle content model.

XSD Complex Type Mappings

26

public class TypeName extends XBComplexType
 {
 ...
 //attribute methods
 ...
 //content methods

 public PT getValue() {...}

 public void setValue(PT value) {...}
 ...
 }

C#:

 {
 ...
 //attribute methods
 ...
 //content methods

 public PT getValue() {...}

 public void setValue(PT value) {...}
 ...
 }

Groups
In XSD, a group is a container for particles. Each particle may be an element, an element wildcard, or another group.

If a complex type has a group for its content model, then the properties that are generated for the complex type are
derived from the particles in the group.

Representation of a Single Element

A single element is represented using some type T. If the element's type is a simple type, then Tis determined as
described in the section XSD Simple Type Mappings. If the element's type is a complex type, then Tis a generated
type, as described in this section, XSD Complex Type Mappings.

Representation of Element Wildcard

A single replacement for an element wildcard is represented using a String. The contents of the String will be raw
XML (including character escaping).

The properties for element wildcards are named "any", "any_1", "any_2" etc..

Example XSD:

 <xsd:complexType name="MyType">
 <xsd:sequence maxOccurs="unbounded">
 <xsd:any namespace="##any"/>

XSD Complex Type Mappings

27

 <xsd:any namespace="##other"/>
 </xsd:sequence>
 </xsd:complexType>

C# and Java:

{
 public String getAny() {...}

 public boolean isSetAny() {...}

 public void setAny(String value) {...}

 public String getAny_1() {...}

 public boolean isSetAny_1() {...}

 public void setAny_1(String value) {...}

 ...
}

In this example, a group class (MyType_1) is generated to represent the repeating sequence group. The methods shown
are the property methods for the two element wildcards.

 MyType_1 myType = new MyType1();

myType.setAny("<room><closet>space>20</closet></room>");

The value must begin with an element start tag, and XBinder will validate that the namespace of that element is valid
according to the <xsd:any> namespace attribute.

If the XML includes namespace prefixes, use the addNamespace method on the complex type class to ensure that the
namespace will be encoded with the desired prefix. See Controlling XML Namespaces for encoding.

Representation of a Group

The group may be a reference to a named group, or it may be an unnamed, nested group. Either way, XBinder will
generate a class for it (see Group Classes).

A named group results in a class of similar name, with a suffix of "_Group" appended (this avoids name clashes with
classes created for types).

A nested group is named based on the type under which it is ultimately nested. The name is of the form ComplexType_S,
where S is a sequence number based on the location of the group relative in the overall construct.

Example XSD:

 <xsd:group name="MyGroup">
 <xsd:sequence>
 <xsd:element name="elem1" type="xsd:string"/>
 <xsd:element name="elem2" type="xsd:string"/>
 <xsd:sequence maxOccurs="3">

XSD Complex Type Mappings

28

 <xsd:element name="elem3" type="xsd:string"/>
 <xsd:element name="elem4" type="xsd:string"/>
 </xsd:sequence>
 </xsd:sequence>
 </xsd:group>

This XSD will result in a group class named MyGroup_Group (representing class MyGroup), and in a group class
named MyGroup_Group_3 (representing the nested sequence group). The suffix is 3 because the nested sequence is
the third item within the enclosing sequence. Had the nested sequence been placed directly after elem1 instead of
elem2, then the suffix would have been 2.

Generating Properties for Particles

Let Tbe the type to represent a single occurrence of a particle, as just described above for elements, element wildcards,
and groups.

If the particle does not repeat, we will have an atomic property of type T.

If the particle does repeat, we will have either an indexed property or a list property, of type T(that is, List/IList< T>
or T[]). If the particle has maxOccurs > 100 or maxOccurs = unbounded, a list property is used; otherwise, an indexed
property is used.

Tmay itself be a single-dimensional array type, so that the particle may be a two dimensional array. This will occur,
for example, if you have a repeating element of a list type.

Sequence, All, and Choice Groups

XSD defines three kinds of groups that particles may belong to: sequence, all, and choice. Each of the particles in
a group are modeled as just described in Generating Properties for Particles. However, the kind of group in which
particles appear also affects the code that is generated.

An < xsd:sequence> group fixes the order in which the particles must appear. This is handled by the encode/decode
methods. Similarly, an <xsd:all> group requires each of the particles to appear, but they may appear in any order. This
is again handled by the encode/decode methods.

An < xsd:choice> group specifies a number of particles, any one of which may appear. In this case, XBinder
generates an extra property that indicates which of the choices has been made.

Example choice group:

 <xsd:complexType name="MyChoiceType">
 <xsd:choice>
 <xsd:element name="choice1" type="..."/>
 ...
 <xsd:element name="choiceN" type="..."/>
 </xsd:choice>
 </xsd:complexType>

Abbreviated generated code:

Java:

 public class MyChoiceType extends XBComplexType

XSD Complex Type Mappings

29

 {
 ...
 public enum Choice {
 choice1, choice2, ..., choiceN}
 ...
 //content methods

 public int getChoice1() {...}

 public boolean isSetChoice1() {...}

 public void setChoice1(int value) {...}

 public void setChoice1() {...}
 ...
 public Choice getWhichField() {...}
 }

C#:

 public class MyChoiceType : XBComplexType
 {
 ...
 public enum Choice {
 None,
 choice1,
 choice2, ...,
 choiceN
 }

 ...

 //content methods

 public int getChoice1() {...}

 public bool isSetChoice1() {...}

 public void setChoice1(int value) {...}

 public void setChoice1() {...}
 ...
 public Choice getWhichField() {...}
 }

Note the following features:

1. The usual property methods are generated for each of the particles in the choice group. However, since each particle
is essentially optional, there will be an isSet method for every particle.

2. You may determine which field is set either by using one of the isSet methods, or by using the getWhichField
method.

3. Setting the property for a particle automatically selects that particle as the chosen one.

XSD Complex Type Mappings

30

Representation of Mixed Content

A "mixed" content model is represented as a single String of raw XML (ie, as it would appear in the XML file). The
AnyTypeclass is an example of what is generated for mixed content models (see the section called “anyType”).

When decoding mixed content, the events received by XBinder from the XML parser must be encoded back into
XML, so that a string of XML can be made available to you, the programmer. As a result, in some cases, you will not
see the exact, original XML. For example (admittedly a strange scenario), the original XML may have encoded the
'A' character using a character reference of "A" but since the character 'A' can be encoded as itself (unlike, for
example, the '&' character), you will see it as an 'A' character.

When encoding mixed content, XBinder writes out the mixed content string exactly as-is. You must handle
any character escaping yourself. For example, if you wish to encode a literal '<' character in some text, you
must encode it as "<". If you are embedding namespace prefixes, you will want to be sure the prefix you
use is mapped to the correct namespace. To declare these namespaces on the parent element, use method
XBComplexType.addNamespace(nsUri, prefix). Otherwise, you may embed a namespace declaration
in your mixed content string.

Mixed content handling can be turned off using the -nomixed command line option. In that case, XBinder compiles
your schema as though it were first modified to have all mixed content models changed to non-mixed. Therefore, any
instances you decode must be valid according to this imaginary, modified version of your schema, or else a validation
error results.

Complex Content
The XSD ComplexContentelement < xsd:complexContent> is used to create a modified version of a base type through
extension or restriction mechanisms. It is similar in concept to creating derived types in Java or C++.

Type Substitution and the Type Hierarchy

The use of complexContent with extensionor restrictioncreates a type hierarchy. XML Schema allows for type substi-
tutions, by using the XML schema instance type attribute (xsi:type).

There are two ways XBinder will represent the XSD type hierarchy in the target language. One approach uses class
extension. The second approach uses interfaces. With the extension approach, every subtype of BaseTypewill be mod-
eled as a subclass of class BaseType. This means that any occurrences of type BaseTypecan be represented using a
reference of class BaseType. This is what you would likely have expected.

With the interface approach, every subtype of BaseType, call it BaseSubType, will be modeled using class BaseSub-
Type, but BaseSubTypemay or may not be a subclass of BaseType. Instead, BaseSubTypewill implement (directly or
indirectly) an interface named BaseType_derivations. Any occurrences of type BaseTypewill be represented using a
reference of interface BaseType_derivations.

The interface approach is used when some type BaseRestreither directly or indirectly restricts BaseType. In that case, it
is inconvenient to have class BaseRestrbe a subclass of BaseType(because it may have a very different content model.)
Yet, in order to support type substitution, we still need to somehow represent the type hierarchy in the target language.
This is accomplished using special "derivation interfaces", such as BaseType_derivations.

When the -noderiv option is chosen, the "derivation interfaces" will not be generated or implemented, and type sub-
stitution is not supported. If type Ris a restriction of type B, their corresponding classes will have no relationship to
each other.

Thus, there are two forms for a class that is a base type for some other type. The first does not involve any interfaces:

XSD Complex Type Mappings

31

 //-noderiv was used or there are no subtypes that are restrictions ofBaseType
 public class BaseType
 {
 ...
 /**
 * Factory method
 */
 public staticBaseType createObject(QName type) {...}
 ...
 }

In the second form, an interface is implemented:

Java:

 // -noderiv was not used and there is a subtype that is a restriction
 // of BaseType
 public class BaseType implements BaseType_derivations
 {
 ...
 /**
 * Factory method
 */
 public static BaseType_derivations createObject(QName type) {...}
 ...
 }

C#:

 // -noderiv was not used and there is a subtype that is a restriction
 // of BaseType
 public class BaseType : BaseType_derivations
 {
 ...
 /**
 * Factory method
 */
 public static BaseType_derivations createObject(QName type) {...}
 ...
 }

The factory method is used during decoding to create the correct class of object, based on the xsi:type attribute that
was present.

There are likewise two forms for a derivations interface. If BaseTypeis at the root of the type hierarchy, it's derivations
interface will be as follows:

Java:

 public interface BaseType_derivations
 {
 public void decode(XMLStreamReader] reader, XBContext xbContext,

XSD Complex Type Mappings

32

 boolean isNilled, boolean hasDefault) ;

 public void encode(XBXmlEncoder encoder, XBContext xbContext,
 QName elemDeclType, boolean ignoreContent) ;
 }

C#:

 public interface BaseType_derivations
 {
 void decode(XmlTextReader reader, XBContext xbContext,
 bool isNilled, bool hasDefault) ;

 void encode(XBXmlEncoder encoder, XBContext xbContext,
 XBQualifiedName elemDeclType, bool ignoreContent) ;
 }

Additionally, if BaseType2is a direct extension/restriction of BaseType, and some other type restricts BaseType2(so
that a derivations interface must also be generated for BaseType2), then we have:

Java:

 public interface BaseType2_derivations extends BaseType_derivations
 {
 }

C#:

 public interface BaseType2_derivations : BaseType_derivations
 {
 }

If you have an reference to one of the _derivations interfaces, you can use the is operator (C#) or the instanceof operator
(Java) to determine what the actual type is.

Extension

When a type is extended with extension, the new type may add attributes or append a group of elements. XBinder
models this by generating a class that extends the class generated for the original type.

XSD type:

 <xsd:complexType name="TypeName">
 <xsd:complexContent>
 <xsd:extension base="BaseType">
 <xsd:group3>
 <xsd:element name="elem1" type="Type1"/>
 <xsd:element name="elem2" type="Type2"/>
 ...
 <xsd:element name="elemN" type="TypeN"/>

3This may be "sequence" or "choice". A group reference may also be used, but it should refer to a sequence or choice group.

XSD Complex Type Mappings

33

 </xsd:group>
 <xsd:attribute name="attr1" type="Type1"/>
 <xsd:attribute name="attr2" type="Type2"/>
 ...
 <xsd:attribute name="attrN" type="TypeN"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

Generated Java:

 public class TypeName extends BaseType
 {
 ...
 [methods for properties for attributes attr1..attrN]
 [methods for properties for elements elem1..elemN]
 ...
 }

Generated C#:

 public class TypeName : BaseType
 {
 ...
 [methods for properties for attributes attr1..attrN]
 [methods for properties for elements elem1..elemN]
 ...
 }

Restriction

It is possible to restrict elements and attributes in an existing content model group by using the restrictionelement. For
either elements or attributes, it is possible to exclude optional items from the derived content model. It is also possible
to restrict wildcards (anyor anyAttribute) to contain values of a given type. It is also possible to further restrict facets
such as minOccursand maxOccursto specify a narrower range than was defined in the base type.

For C# and Java, the class generated for a restriction is the same as would have been generated for an equivalent XSD
type defined without restriction. Any attribute or elements that are inherited from the base type are generated into the
restricted type's class.

Assuming -noderiv was not used, the generated class will implement the derivations interface for the restricted type's
supertype.

The general mapping is as follows:

XSD:

 <xsd:complexType name="TypeName">
 <xsd:complexContent>
 <xsd:restriction base="BaseType">
 ...
 </xsd:restriction>

XSD Complex Type Mappings

34

 </xsd:complexContent>
 </xsd:complexType>

Generated Java:

 public class TypeName extends XBComplexTypeimplements BaseType_derivations
 {...}

Generated C#:

 public class TypeName : XBComplexType, BaseType_derivations
 {...}

anyType

XSD type anyTypeis a complex type with mixed content, which is the ultimate base type for all complex types. XBinder
represents anyTypeby generating a class called AnyType:

Java:

 public class AnyType extends XBComplexType
 {
 ...
 //attribute methods for attribute wildcard

 public List<XBAttributeBase> getAnyAttr() {...}

 public boolean isSetAnyAttr() {...}

 public void unsetAnyAttr() {...}

 //content methods for mixed content model
 public String getMixedContent() {...}

 public boolean isSetMixedContent() {...}

 public void setMixedContent(String value) {...}
 ...
 }

C#:

 public class AnyType : XBComplexType
 {
 ...
 //attribute methods for attribute wildcard

 public IList<XBAttributeBase> getAnyAttr() {...}

 public bool isSetAnyAttr() {...}

XSD Complex Type Mappings

35

 public void unsetAnyAttr() {...}

 //content methods for mixed content model
 public String getMixedContent() {...}

 public bool isSetMixedContent() {...}

 public void setMixedContent(String value) {...}
 ...
 }

Class AnyTypeis used wherever anyTypeis referenced: if an element is declared to be of type anyType, class AnyTypeis
used; if a complex type is defined as an extension of anyType, the generated class will extend class AnyType. Class
AnyTypeis only generated when it is needed.

Regarding restriction on anyType, note that:

 <xsd:complexType name="MyType">
 <xsd:complexContent>
 <xsd:restriction base="xsd:anyType">
 XSD content group definition...
 </xsd:restriction>
 </xsd:complexContent>
 <xsd:complexType>

is equivalent to:

 <xsd:complexType name="MyType">
 XSD content group definition...
 </xsd:complexType>

Therefore, a restriction on anyType is handled as a normal complex type definition, as discussed elsewhere.

Named Groups
The XSD groupelement < xsd:group> is used to create a reusable content model group. A group declaration is trans-
lated into a class. The class name will include a _Group suffix to avoid collisions with classes created for types of the
same name. The group class is used wherever the group is referenced.

XSD:

 <xsd:group name="GroupName">
 XSD content group definition ...
 </xsd:group>

Java/C# code:

 public class GroupName_Group {
 [properties for particles from group]
 ...
 }

XSD Complex Type Mappings

36

Element Substitution Groups
Substitution groups are very similar to choice types. They allow a given base element (referred to as the substitution
group head) to be replaced with a different element. The replacement element is designated as being part of the group
through the use of the XSD substitutionGroup attribute.

For example, the following element declarations declare a group in which the head element (Publication) would be
replaced with either the Book element or Magazine element:

 <xsd:element name="Publication" abstract="true"
 type="PublicationType"/>

 <xsd:element name="Book" substitutionGroup="Publication"
 type="BookType"/>

 <xsd:element name="Magazine" substitutionGroup="Publication"
 type="MagazineType"/>

In these declarations, the types BookTypeand MagazineTypemust be derived from the substitution group head type (in
this case, PublicationType). This now allows Book or Magazine to be used anywhere Publication was declared to be
used (in fact, the elements in this case must be Book or Magazine because Publication was declared to be abstract and
therefore cannot appear in an XML instance).

XBinder generates a special group class to hold each of the substitution group alternative elements. This class is
generated as for an <xsd:choice> whose particles consist of each of the elements in the substitution group. The format
of the name for the special group class is "_<element>SG", where <element> would be replaced with the name of the
substitution group head element. In the example above, the generated type name would be "_PublicationSG".

Nillable Elements
In XML Schema, elements may be declared to be nillable. Within the XML instance document, nillable elements
might or might not be nilled. A nilled element must have no text or element content, but it may still have attributes. To
model nillable elements, XBinder uses a generic class, XBNillableElem. XBNillableElem simply combines
a value with an isNilled flag.

Example: consider the following XSD:

 <xsd:complexType name="MyComplex">
 <xsd:sequence>
 <xsd:element name="an_element" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="an_attribute" type="xsd:string" use="required"/>
 </xsd:complexType>

 [...]
 <!-- An element inside some complex type -->
 <xsd:element name="myComplexElem" type="MyComplex" nillable="true"/>
 [...]

This will produce the following field:

XSD Complex Type Mappings

37

 protected XBNillableElem<MyComplex> myComplexElem;

When creating a value for myComplexElem, you may create a nilled or not-nilled element. If you create a nilled
element, you will not need to populate an_element, but you will need to populate an_attribute, since it is for
a required attribute. Here is an example of populating myComplexElem as being nilled:

 MyComplex myComplex = new MyComplex();
 myComplex.setAn_attribute("attribute value");
 outerobj.setMyComplexElem(new XBNillableElem<MyComplex>(myComplex, true /*nilled*/));

When encoding a nilled element, the element must have an xsi:nil attribute encoded. The XSI namespace will auto-
matically be declared in the output XML. However, to avoid having many such namespace declarations encoded, you
may wish to invoke

 root.addNamespace("http://www.w3.org/2001/XMLSchema-instance", "xsi");

on your root element type before encoding.

38

Chapter 6. Configuration File
The default bindings of source schema components to C#/Java types as presented above may not meet the require-
ments of all applications. In such cases, the default bindings can be customized by using a configuration file. This is
sometimes refered to as a binding schema in similar products. A configuration file contains binding declarations which
are specified by a binding language, the syntax and semantics of which are defined in this section.

Binding Language
The binding language is an XML based language that defines constructs referred to as binding declarations. A bind-
ing declaration can be used to customize the default binding between an XML schema component and its C#/Java
representation.

The schema for binding declarations is defined in the namespace http://www.obj-sys.com/XBConfig.

Binding Declaration
The configuration file enables customized binding without requiring modification of the source schema. The schema
component to which the binding declaration applies must be identified explicitly. Minimally, a configuration file is
of the following form:

 <bindings version=”1.0">
 <schemaBindings namespace | schemaLocation = "xsd:anyURI">
 <nodeBindings name | node = "xsd:string">*
 <node bindings declaration>
 <nodeBindings>
 </schemaBindings>
 </bindings>

The schemaBindings node has the attribute namespace or schemaLocation to refer to a schema. The name-
space attribute is used to specify a schema using its target namespace. The schemaLocation attribute specifices
a schema using its physical file location.

The nodeBindings node has attributes name and node to construct a reference to one or more nodes within the
schema. The name attribute specifies a node using its QName. The node attribute uses an XPath expression to specify
a set of nodes.

A summary of these attribute values follows:

namespace: A reference to a schema’s target namespace.

schemaLocation: A URI reference to an XML schema document.

name: The qualified name (QName) of a node within the schema.

node: An XPath 1.01 expression that identifies the node(s) within a schema with which to associate binding decla-
rations.

An example of a configuration file can be found in the section “Configuration File Example”.

Version Attribute
The normative binding schema specifies a global version attribute. This is used to identify the version of the binding
declarations. For example, a future version of this specification may use the version attribute to specify backward

1 XML Path Language (XPath) Version 1.0 [http://www.w3.org/TR/xpath]

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

Configuration File

39

compatibility. For this version of the specification, the version must always be 1.0. If any other version is specified,
the configuration file will be skipped.

The version attribute must be specified in the root <bindings> element in the configuration file:

 <bindings version="1.0" ... />

Configuration File Language Overview
A binding declaration customizes the default binding of a schema element to a C#/Java representation. The binding
declaration defines one or more customization values, each of which customizes a part of C#/Java representation.

Scope

When a customization value is defined in a binding declaration, it is associated with a scope. The scope of a customiza-
tion value is the set of schema elements to which it applies.

The defined scopes are as follows:

• global scope: A customization value defined in <bindings> has global scope. A global scope covers all the
schema elements in the source schema and (recursively) any schemas that are included or imported by the source
schema.

• schema scope: A customization value defined in <schemaBindings> has schema scope. A schema scope covers
all the schema elements in the target namespace of a schema.

• node scope: A customization value defined in <nodeBindings> has node scope. A node scope covers all schema
elements that reference the type definition, the global declaration, or the local declaration.

A customization value defined in one scope is inherited for use in a binding declaration covered by another scope as
shown by the following inheritance hierarchy:

• A schema element in schema scope inherits a customization value defined in global scope.

• A schema element in node scope inherits a customization value defined in schema or global scope.

Likewise, a customization value defined in one scope can override a customization value inherited from another scope
as shown below:

• A value in schema scope overrides a value inherited from global scope.

• # value in node scope overrides a value inherited from schema scope or global scope.

Global Bindings: <bindings>
The customization values in the <bindings> declaration have global scope. These affect all elements within all
schemas defined in the compilation project.

Usage

 <bindings version=”1.0”>
 [<prefix>xs:token</prefix>]
 [<schemaBindings>. . .</schemaBindings>]
 [<nameXmlTransform>. . .</nameXmlTransform>]
 [<doubleFormat/>]
 [<decimalFormat/>]
 [<floatFormat/>]

Configuration File

40

 [<typemap>. . .</typemap>]
 [<reservedWords>. . .</reservedWords>]
 ...
 </bindings>

The following attributes are defined for the <bindings> node:

version See the section “Version Attribute” above for details.

The following customization elements may be defined within the global scope:

prefix This is used to specify a prefix that is prepended to all XML names including type names
and global element names to form C#/Java type and variables names. It should be a
legal C#/Java identifier.

schemaBindings This is used to identify individual schemas for schema scope binding declarations (see
the section called “<schemaBindings> Declaration”). It can be specified multiple
times, but only once per schema.

nameXmlTransform This is used to perform more accurate XML names transformation than prefix allows.
See the section called “Advanced XML Names Transformation” for further details.

doubleFormat This specifies a default (global) format for encoding values of “double“ type. See the
section called “XML Numeric Values Format Specification”.

decimalFormat This specifies a default (global) format for encoding of values of “decimal“ type. See
the section called “XML Numeric Values Format Specification”.

floatFormat This specifies a default (global) format for encoding of values of “float“ type. See the
section called “XML Numeric Values Format Specification”.

typemap This specifies a default (global) mapping of a specific XSD type to a C#/Java type (see
the section called “ <typemap> Declaration ”). It can be specified multiple times. In
each typemap declaration, a space-separated list of XSD types can be mapped to one
C#/Java type.

reservedWords This element is used to add additional reserved words to the reserved words list. These
are words that are defined in the output target language (for example, C# or Java).
XBinder will alter these words when they are defined in a schema file so there is not
a name clash in the output file. By default, all reserved words defined by the target lan-
guage are included in this table.

The reserved word list is specified as a space-separated list of words.

<schemaBindings> Declaration
The customization values in <schemaBindings> binding declarations have schema scope. These apply to all ele-
ments within the referenced XML schema document.

Usage

 <schemaBindings namespace | schemaLocation=”xs:anyURI”>
 [<prefix>xs:token</prefix>]
 [<sourceFile>xs:anyURI</sourceFile>]
 [<nameXmlTransform>. . .</nameXmlTransform>]
 [<doubleFormat/>]
 [<decimalFormat/>]
 [<floatFormat/>]
 [<nodeBindings>. . .<nodeBindings>]

Configuration File

41

 [<typemap>. . .</typemap>]
 ...
 </schemaBindings>

The following attributes are defined for <schemaBindings>:

namespace: A URI reference to a schema’s target namespace. The
processor will look at the target namespace in all of the
schemas currently being compiled for a match with the
given namespace. When an XSD document without a tar-
getNamespace is included into an XSD document with a
targetNamespace, it takes on the including document's tar-
getNamespace. This fact is taken into account.

schemaLocation: URL as it is used in <xsd:import> or
<xsd:include> statements. When this alternative is
used, <sourceFile> should be provided, to map the
schema URL to an actual schema file. No other child ele-
ments should be present. To specify other options, use an
<schemaBindings> element with a namespace attribute.
XBinder does not have the capability to automatically ref-
erence schemas remotely; therefore, any imported or in-
cluded schemas must have been downloaded in advance
and be present on the user’s computer.

The following customization values are defined in schema scope:

prefix: This is used to specify a prefix that is prepended to all
XML names, including type names and global element
names, to form C#Java type and variable names. It should
be a legal C#/Java identifier.

sourceFile: The actual schema file path. XBinder does not have the
capability to automatically reference schemas remotely;
therefore, any imported or included schemas must have
been downloaded in advance and be present on the user’s
computer. This element is used to map a schema URL to
a file on the local system.

nameXmlTransform: This is used to perform more accurate XML names trans-
formation than prefix allows. See the section called “Ad-
vanced XML Names Transformation” for further details.

doubleFormat: This specifies a schema-level format for encoding of val-
ues of "double" type. See the section called “XML Nu-
meric Values Format Specification”.

decimalFormat: This specifies a schema-level format for encoding of val-
ues of "decimal" type. See the section called “XML Nu-
meric Values Format Specification”.

floatFormat: This specifies a schema-level format for encoding of val-
ues of "float" type. See the section called “XML Numeric
Values Format Specification”.

nodeBindings: Node scope binding declarations (see the section called
“<nodeBindings> Declaration”). This element can be
specified multiple times, but only once per definition.

Configuration File

42

typemap: This specifies a schema-level mapping of a specific
XSD type to a C#/Java type (see the section called “
<typemap> Declaration ”). It can be specified multiple
times. In each typemap declaration, a space-separated list
of XSD types can be mapped to one C#/Java type.

<nodeBindings> Declaration
The customization values in the <nodeBindings> binding declaration have node scope. These refer to individual
type or element definitions within a schema. It is also possible to reference local elements within complex types for
customization.

Usage

 <nodeBindings name | node=”xs:string”>
 [<prefix>xs:token</prefix>]
 [<nameXmlTransform>. . .</nameXmlTransform>]
 [<array [maxSize=”xs:nonNegativeInteger”/>]]
 [<isBigInteger/>]
 [<isDynamic/>]
 [<ctype> string | numeric </ctype>]
 [<noPatternTest/>]
 [<numericFormat>. . .</numericFormat>]
 [<nodeBindings>. . .<nodeBindings>]
 ...
 </nodeBindings>

The following attributes are defined for <nodeBindings> node:

name: This attribute selects a node for configuration processing
based on its QName.

node: An XPath 1.0 expression that identifies the schema node
within the referenced schema with which to associate
binding declarations

The following customization values are defined in node scope:

nameXmlTransform This is used to perform more accurate XML names trans-
formation than prefix allows. See Section “Advanced
XML Names Transformation” for further details.

prefix This is used to specify a prefix that is prepended to all
XML names including type names and global element
names to form C#/Java type and variables names. It should
be a legal C#/Java identifier.

array This specifies that an array should be used instead of a
linked list for repeated elements. The maxSize attribute
specifies the maximum size of the array. The default value
if not specified is 100.

isBigInteger By default, XBinder represents xsd:integer as an
int. This option specifies that System.decimal or
java.lang.BigInteger should be used instead. This qualifier
can be applied to either an integer or complex type. In the

Configuration File

43

latter case, all integer elements within the complex type
are flagged as big integers.

cstype

javatype

This is used to control the C#/Java type generated by the
XBinder compiler. These elements also occur in the con-
text of a typemap and they are discussed in the section
called “ <typemap> Declaration ”.

noPatternTest If type uses a pattern facet, this may be used to turn off
the pattern match test.

numericFormat This specifies a node-level format for encoding of
numeric values. Affects values of xsd:double,
xsd:decimal, and xsd:float types. See the section
called “XML Numeric Values Format Specification”.

nodeBindings Nested <nodeBindings> declarations to allow more
accurate references to enclosed elements, such as local el-
ements inside groups (sequence, all, choice, group, etc).

<typemap> Declaration
The customization values in <typemap> binding declarations are used to map a specific XSD type, or a space-
separated list of XSD types, to a C#/Java type. This can be done at global or schema level. This mapping configuration
can be used to preserve the format of floating point numbers after decoding and reencoding.

Usage

 <typemap>
 [<xsdtype>. . .</xsdtype>]
 [<cstype>. . .</cstype>]
 [<javatype>. . .</javatype>]
 ...
 </typemap>

<xsdtype> is used to specify the XSD Type being mapped, and <cstype> or <javatype> are used to specify the C# or
Java type. For example, to map xsd:decimal, xsd:double and xsd:float types to string:

 <typemap>
 <xsdtype>decimal double float</xsdtype>
 <cstype>string</cstype>
 <javatype>string<javatype>
 </typemap>

It is possible to specify multiple mappings.

The valid values for cstype and javatype are: byte, int16, uint16, int32, uint32, string. The values are not target
language names, but have an obvious correspondence to target language types. The unsigned types (u*) are not legal
values for javatype.

Advanced XML Names Transformation
The advanced XML names transformation allows a prefix or suffix to be added to type or element names.

Usage

 <nameXmlTransform>

Configuration File

44

 [<typeName [prefix=”xs:token”] [suffix=”xs:token”]/>]
 [<elementName [prefix=”xs:token”] [suffix=”xs:token”]/>]
 </nameXmlTransform>

It is possible to specify separate prefixes and suffixes for type names and element names. If <typeName> is used
then values of the optional attributes “prefix” and “suffix” will be applied to all custom types in the scope of this
transformation. If <elementName> is used then prefix and suffix will be applied to element names.

XML Numeric Values Format Specification
This section addresses customization of the encoding format of numeric values (XSD double, decimal, or float types).
It is sometimes necessary to have numbers formatted in a certain way. For example, a decimal value of 12 may need
to be formatted as "+0012.00". It is possible using these qualifiers to specify the exact required format of such values.
This can be done at any scope - global, schema or node. To customize the format of all decimal, double or float values at
the global or schema level, use the <decimalFormat>, <doubleFormat> and <floatFormat> configuration
elements respectively. For the node scope, use <numericFormat> element.

Usage

 <decimalFormat | doubleFormat | floatFormat | numericFormat
 [totalDigits=”xs:byte”]
 [fractionDigits=”xs:byte”]
 [fractionMinDigits=”xs:byte”]
 [integerMaxDigits=”xs:byte”]
 [integerMinDigits=”xs:byte”]
 [expSymbol=”xs:token”]
 [expMinValue=”xs:short”]
 [expMaxValue=”xs:short”]
 [expDigits=”xs:byte”]
 [signPresent=”xs:boolean”]
 [pointPresent=”xs:boolean”]
 [expSignPresent=”xs:boolean”]
 [expPresent=”xs:boolean”]
 >

The application of these attributes varies according to the XSD type. The formatting of float/double values and the
formatting of decimal values are discussed in detail in the next two sections.

Warning

The application of this configuration information to C# and Java differs from C and C++.

Formatting xsd:double/float Values

Overview

Formatted numeric strings may have one of two forms: decimal notation (no exponent) or scientific notation (“E”
notation). Scientific notation uses the form:

 [sign] mantissa E [sign] exponent

where mantissa is written in decimal notation, and exponent is an integer. The choice of decimal or scientific notation
depends on the choice of exponent and on the expPresent parameter. By default, if the selected exponent is zero,
the exponent is not shown (resulting in decimal notation). However, expPresent can be used to force display of
the exponent, even when it is zero.

Configuration File

45

Overview of Options

totalDigits

integerMaxDigits

fractionDigits

These each limit the number of digits, either overall or
in the integer or fraction part. They do not count leading
zeros in the integer part, nor trailing zeros in the fraction
part.

totalDigits, if specified must be at least 1.

integerMaxDigits and fractionDigits must be zero or
more.

Note that the default for totalDigits is based on the
datatype (double vs. float).

integerMinDigits This specifies the minimum number of digits to display
in the integer part. If necessary, leading zeros are added.
Using 0 means that the integer part, if 0, will not be dis-
played. Using 1 forces the display of a leading zero when
the integer part is 0. The default value is 1. Note that in-
tegerMinDigits > integerMaxDigits is allowed (this will
force some leading zeros).

fractionMinDigits This specifies the minimum number of digits to display
in the fraction part. If necessary, trailing zeros are added.
Note that fractionMinDigits > fractionDigits is allowed
(this will force some trailing zeros). This option may pro-
duce strange looking results, as it may make a number ap-
pear to be more precise when digits have been rounded
away. For example, we may round 12.345 to 12.35 due to
a totalDigits setting of 4, but format this as “12.3500” due
to a fractionMinDigits setting of 4.

expMinValue

expMaxValue

These specify exponential notation and control the range
of exponents that may be used. The location of the decimal
point in the mantissa is adjusted accordingly. When used,
integerMaxDigits is ignored.

expSymbol Specify use of 'E' or 'e' for the exponent symbol. Specify
'0' to prevent falling back on exponential notation for large
magnitude values (see details in the section on Standard
Decimal Notation, below).

signPresent

expSignPresent

Specify 1 or true to force the display of signs.

expPresent Specify 1 or true to force the display of a zero exponent.
Note that this will force display of a zero exponent even
if decimal notation as been selected.

expDigits The minimum number of digits to use in the exponent. If
expDigits >= 1 is specified, this option forces exponential
notation. If specified as 0, this option forces decimal no-
tation.

pointPresent Specify 1 or true to force the display of the decimal
point. Note that specifying fractionMinDigits > 0 will also
force the display of the decimal point.

Configuration File

46

Exponential Notation: Method 1

The first way to specify exponential notation is by specifying at least one of the expMinValue or expMaxValue options.

If possible, the mantissa will be normalized such that 1 ≤ mantissa ≤ 10 (“normalized scientific notation”). If that
requires an out-of-range exponent, then expMinValue/expMaxValue will be used for the exponent.

When either of these options (expMinValue or expMaxValue) are specified, the integerMaxDigits setting is ignored.

We attempt to honor the totalDigits setting by rounding off fractional digits of the mantissa. This is not possible, when
expMaxValue is specified, for values such that |value| > 10totalDigits + expMaxValue. In that case, we will round integer
digits to zero. For example, with totalDigits=2, expMaxValue=3, and value = 234567, the formatted result would be
“230E3”.

The fractionDigits setting is always honored. Both fractionDigits and totalDigits may cause rounding off of fractional
digits in the mantissa.

Note that using expMinValue may cause some smaller values to round to zero. In particular, values such that |value| <
5⋅10expMinValue - fractionDigits - 1 will round to zero (substitute totalDigits for fractionDigits, if fractionDigits was not spec-
ified). For example, suppose expMinValue = -2 and consider the value 4.23E-6. This value is precisely .000423E-2,
which is formatted as “0E-2”, given totalDigits (or fractionDigits) = 3. Likewise, 4.567 rounds to “0E3” with expMin-
Value = 3 and totalDigits = 2 (4.567 = .004567E3).

To summarize, using expMinValue and expMaxValue allows you to fix the exponent range, but a side effect is that
it may present fewer significant digits than with normalized scientific notation. However, note that these rules imply
that all values where 10expMinValue ≤ |value| ≤ 10 expMaxValue + 1 will be presented in normalized scientific notation.

Tip

If you specify expMaxValue = 0 and expPresent=false, if 1 ≤ |value| ≤ 10totalDigits , the value will appear
in decimal notation (the exponent will be 0 and hidden), while smaller values will use normalized scientific
notation. Larger values, however, will appear in decimal notation with trailing zeros in the integer part (e.g.
8900000).

Exponential Notation: Method 2

The second way to specify exponential notation is through the use of the expDigits option. If you specify expDigits ≥
1, then exponential notation will be used. The integerMaxDigits option controls the location of the decimal point and
thus the choice of exponent. You must not specify either the expMinValue or the expMaxValue for this method.

By default (i.e., when no integerMaxDigits value is specified), the exponent will be normalized such that 1 ≤ |mantissa|
< 10 . However, if you specify integerMaxDigits ≥ 0, this will affect the location of the decimal point, and thus the
choice of exponent.

If you specify integerMaxDigits = 0, the integer part will be 0. Whether this digit is displayed or not depends on the
integerMinDigits value (≥ 1 means a leading zero).

If you specify integerMaxDigits = 1, the default behavior results (normalized exponent).

If you specify integerMaxDigits > 1, we have some freedom on where to place the decimal point. We follow these rules:

• Use at least 1 integer digit.

• Use at least as many integer digits as totalDigits – fractionDigits. This avoids losing significant digits due to round-
ing.

Configuration File

47

• If integerMinDigits > 0 is specified and using this many integer digits does not require a negative exponent, use
at least this many integer digits. If this does require using a negative exponent, and some lesser number of integer
digits does not, use at least the lesser number of digits. This avoids unnecessary padding with leading zeros, but also
avoids moving the decimal point beyond its “natural” location (where it would appear in decimal notation).

• Use no more than the number of integer digits prescribed by the preceding rules, and of course, no more than
integerMaxDigits.

Specifying integerMinDigits > integerMaxDigits forces padding with at least 1 leading zero and is allowed. Using
totalDigits or fractionDigits will cause rounding after the appropriate number of digits. Some examples:

totalDigits fractionDigits integerMaxDig-
its

integerMinDigits value result

7 7 1 3 456.789 “004.56789E2”

7 7 2 3 456.789 “004.56789E2”

7 7 2 2 456.789 “045.6789E1”

7 4 4 0 9876.54321 “987.6543E1”

Standard Decimal Notation

If you specify expDigits = 0 and do not specify either expMinValue or expMaxValue, decimal notation will be used.
In this case, values should be constrained as follows:

• |value| < 10totalDigits

• |value| < 10integerMaxDigits (if integerMaxDigits is specified)

If either of these constraints is violated, rather than produce an error (as would be the case for xsd:decimal types), we
have fall-back behavior, depending on the expSymbol option:

• If expSymbol is set to '0', then we will format the value in decimal notation, using as many integer digits as allowed,
and then as many trailing zeros as needed to indicate the correct magnitude of the number.

• Otherwise, we will format the value using exponential notation, with as many integer digits as allowed (getting as
close to the decimal representation as possible) and an exponent that conveys the magnitude. In this case, the extra
digits fall into the fraction part, which is rounded away.

Fractional digits will be rounded, based on totalDigits and/or fractionDigits. Values, such that |value| < 5⋅10-fractionDigits

- 1 , will round to zero.

Mixed Notation

If you do not specify expMinValue, expMaxValue, or expDigits, then mixed notation is used. Mixed notation basically
means that we use exponential notation with a normalized exponent, except that for some values, we use an exponent
of zero (which is only displayed if expPresent is true).

Use an exponent of zero iff: 1 ≤ |value| ≤ 1010 . Otherwise, use the normalized exponent.

Consider carefully the use of integerMaxDigits or fractionDigits with mixed notation, as the notation affects rounding.
For example, 0.1235 is rounded to “0.124” when using 3 fraction digits in decimal notation, but is presented without
rounding when using exponential notation with 3 fraction digits: “1.235E-1”. With mixed notation, rounding will not
occur in the same decimal location for all numbers, neither will it occur after a given number of significant digits for
all numbers. Trailing integer zeros will be used if either of the following conditions occur:

Configuration File

48

• |value| ≥ 10totalDigits

• |value| ≥ 10integerMaxDigits (if integerMaxDigits is specified)

Formatting xsd:decimal Values
The formatting of xsd:decimal values differs from xsd:double values, and is much simpler. This because the decimal
type may not use exponents.

Overview of Options

totalDigits This limits the number of digits in the number. Leading
zeros in the integer part and trailing zeros in the fraction
part do not count (as with the XML Schema totalDigits
facet).

fractionDigits This limits the number of fraction digits in the number.
Trailing zeros in the fraction part do not count (as with the
XML Schema fractionDigits facet)

integerMaxDigits Not used with xsd:decimal.

integerMinDigits

fractionMinDigits

These specify the minimum number of digits to display in
the integer and fraction parts. For the integer part, leading
zeros may be added. For the fraction part, trailing zeros
may be added.

signPresent Formatting option to force display of positive signs.

pointPresent Force the display of the decimal point. Note that specify-
ing fractionMinDigits > 0 also will force the display of the
decimal point.

Rounding

Fractional digits are rounded off to meet the given totalDigits and fractionDigits settings. In some cases, rounding
causes carryover and adds an additional integer digit, which may then violate the totalDigits setting. See the discussion
of validation below.

value totalDigits setting fractionDigits setting result

456 2 any violates totalDigits

999.999 3 any violates totalDigits (after
rounding, 4 integer digits are
needed)

999.99 4 any “1000”

Formatting Ouput

After rounding, leading and trailing zeros are added, as needed, to meet the integerMinDigits and fractionMinDigits
parameters. Note that integerMinDigits and fractionMinDigits are not limited by totalDigits or fractionDigits (since
these add leading/trailing zeros).

If the integer portion is zero, integerMinDigits controls whether the zero is displayed. If integerMinDigits = 0 was
specified, it is not displayed. In all other cases, the zero will be displayed.

Configuration File

49

Note that fractionMinDigits, in particular, may produce strange looking results, as it may make a number appear to be
more precise when digits have been rounded away. For example, we may round 12345.67 to 12346 due to a totalDigits
setting of 5, but format this as “12346.00” due to a fractionMinDigits setting of 2.

Relationship to totalDigits/fractionDigits Facets

If the value has a totalDigits or fractionDigits facet, the facet will be used instead of any value specified in the con-
figuration file.

Relationship to Validation

The only possible validation violation is for a totalDigits setting to be violated by a value such that |value| ≥ 10totalDigits

. For all other values, rounding is used to avoid validation violations.

If the totalDigits setting being applied comes from a totalDigits facet and -lax is not in use, an error will occur. In
all other cases, the violation of the totalDigits setting will be ignored. However, the totalDigits setting will still serve
to limit the number of fractional digits – there will be 0 fractional digits (since the integer digits will consume all of
the available digits, and more).

Default Behavior

The default behavior (when no configuration options or facets are present) is to format the value using as many digits
as needed for an exact representation.

Example

integerMinDigits fractionMinDigits signPresent value result

4 2 true 12 "+0012.00"

Configuration File Example
The following is an example of a configuration file for a framework consisting of two schemas:

<bindings version="1.0">
 <schemaBindings
 schemaLocation=
 "http://www.example.org/whizbang/schema/sales.xsd">
 <sourceFile>C:\XBinder\xsd\whizbang\sales.xsd</sourceFile>

 <!-- Names for this schema prefixed with SALES_ -->
 <prefix>SALES_</prefix>

 <!-- Any element named myGlobalElem is given a prefix and forced
 to an unsigned 16-bit integer representation.
 -->
 <nodeBindings node="//xsd:element[@name='myGlobalElem']">
 <prefix>GE_</prefix>
 <cstype>uint16</ctype>
 </nodeBindings>
 </schemaBindings>

 <schemaBindings schemaLocation="product.xsd">

Configuration File

50

 <nodeBindings node="//xsd:element[@name='Product']">
 <prefix>prod</prefix>
 </nodeBindings>

 <!-- Any type or element named itemRecord is given a prefix -->
 <nodeBindings name="itemRecord">
 <prefix>ZZZ_</prefix>
 </nodeBindings>

 <!-- Force all elements p, q, r defined anywhere under type ProductType
 to be represented as System.Decimal/java.math.BigInteger
 -->
 <nodeBindings node="//xsd:complexType[@name='ProductType']">
 <nodeBindings node=".//xsd:element[@name='p']">
 <isBigInteger/>
 </nodeBindings>
 <nodeBindings node=".//xsd:element[@name='q']">
 <isBigInteger/>
 </nodeBindings>
 <nodeBindings node=".//xsd:element[@name='g']">
 <isBigInteger/>
 </nodeBindings>
 </nodeBindings>
 </schemaBindings>
</bindings>

51

Chapter 7. Support For Other Java
Platforms
XBinder supports Java Standard Edition (JSE) 1.5 without taking any special actions. If you want to use XBinder
on other Java-based platforms, you will find the information you need in this chapter. Support exists for Java Micro
Edition (JME) CLDC 1.1/MIDP 2.0, and Android.

Android
This section discusses XBinder's support for Android, an open source operating system, found on mobile devices,
which leverages the Java platform. This section explains what is needed in order to run XBinder-based applications
(that is, code generated by XBinder, together with the XBinder Java runtime) on an Android device.

Using XBinder with Android is simple:

• Use the -android option with XBinder. This changes the generated code slightly. Rather than using class-
es that are not present in Android, it uses replacement classes we have provided. For example, it uses
com.objsys.javax.xml.datatype rather than javax.xml.datatype.

• Use the xbrt_android.jar file. This is the XBinder runtime for Android. It contains replacement classes for classes
that are not present in Android.

• The XBinder generated code will accept an XmlPullParser for use in parsing XML. Be sure to use a namespace
aware parser.

For users of Android with XBinder prior to version 2.2
In earlier versions of XBinder, it was necessary to use custom build scripts, a special StAX-Over-XmlPull layer, and
a tool to repackage our standard runtime. As of XBinder 2.2, this has changed and things are now simpler. If you used
XBinder with Android prior to XBinder 2.2, you will need to make a few changes to your code:

• Replace uses of javax.xml.namespace.QName with com.objsys.javax.xml.namespace.QName

• Replace uses of javax.xml.datatype with com.objsys.javax.xml.datatype

• Rather than provind the XBinder generated code with a javax.xml.stream.XMLStreamReader, provide an
org.xmlpull.v1.XmlPullParser. The XmlPull API is a standard part of the Android API.

• Rather than using xbrt.jar, use xbrt_android.jar. The other JARs that you previously needed are no longer used
(j2se_android.jar, soxp.jar, stax-api-1.0.1.jar).

• You can now use a standard Android project with the ADT (Android Development Tools) Eclipse plug-in. You do
not need to use a customized build. You no longer need to use Jar Jar Links.

Working with the Android RSS Sample
You may refer to the AndroidRSS sample as an example of using XBinder with Android. The sample is located in the
<XBINDER_HOME>\java\sample\AndroidRSS folder. To use this project, do the following:

• execute the following command in the AndroidRSS folder:

Support For Other Java Platforms

52

android update project --path .

This will create file local.properties. The build will fail without this.

• Run xb.bat to compile the schema and generate code.

• Define a classpath variable in Eclipse called XBINDER_HOME to point to your XBinder installation (e.g. c:
\xbinder) (Window > Preferences > Java > Build Path > Classpath Variables)

• Import the project into Eclipse.

You can now build the project and deploy it to an emulator device using the Android Development Tools (ADT)
Eclipse plug-in (available from the Android site). The AndroidRSS sample will download the XML RSS feed for
CBS' Top News stories. It uses the XBinder generated classes to decode this XML, and then displays the titles and
descriptions of the items from the feed.

Redistribution
When deploying your APK, you will be redistributing object code from xbrt_android.jar. Be aware that some of the
binary code included in that JAR is covered by the GNU General Public License with "classpath" exception. Be sure
to meet your obligations under section 3 of the license (which discusses source code availability). Note that we have
provided you with the source for the code falling under the GPL in java/xbrt_android_open_src.zip.

Be careful not to redistribute runtime_src.zip (available in licensed kits only), which includes proprietary code that
is not licensed for source redistribution.

Known Limitations
XBinder uses the XML Pull Parser pre-deployed on the Android device. You will likely find the implementation of
XmlPull does not support DTD or entity reference replacement (except for the predefined entities such as &) and
therefore XBinder will not support these either.

Java Micro Edition
This section discusses XBinder's support for Java Micro Edition (JME).

Using XBinder with JME is simple:

• Be sure you meet the minimum requirement of CLDC 1.1 and MIDP 2.0

• Use the -cldc option with XBinder. This changes the generated code slightly. Rather than using classes
that are not present in CLDC/MIDP, it uses replacement classes we have provided. For example, it uses
com.objsys.javax.xml.datatype rather than javax.xml.datatype. The -cldc option also causes the generated code not
to use language features that it normally would use, such as generics, or for each loops.

• Use the xbrt_cldc.jar file. This is the XBinder runtime for Java ME CLDC/MIDP. It contains replacement classes
for classes that are not otherwise present. The classes in this JAR have been pre-verified.

• In folder <XBINDER_HOME>\java\xmlpull, we have provided a JAR for the XmlPull API (www.xmlpull.org),
and a pared-down JAR of the kXML implementation of this API. Include the API on your classpath, and deploy
both as part of your Java ME application.

• The XBinder generated code will accept an XmlPullParser for use in parsing XML. Be sure to use a namespace
aware parser.

Support For Other Java Platforms

53

Redistribution
When deploying your JME application, you will be redistributing object code from xbrt_cldc.jar. Be aware that some
of the binary code included in that JAR is covered by the GNU General Public License with "classpath" exception. Be
sure to meet your obligations under section 3 of the license (which discusses source code availability). Note that we
have provided you with the source for the code falling under the GPL in java/xbrt_cldc_open_src.zip.

Be careful not to redistribute runtime_src.zip (available in licensed kits only), which includes proprietary code that
is not licensed for source redistribution.

Known Limitations
• XBinder uses the XML Pull Parser pre-deployed on the Android device. You will likely find the implementation of

XmlPull does not support DTD or entity reference replacement (except for the predefined entities such as &)
and therefore XBinder will not support these either.

• Pattern facets are not validated when using the -cldc option with XBinder. Java ME does not provide a regular
expression facility, and we chose not to increase the size of our runtime further by adding support for regular
expressions.

• Trimmed API. Our replacement classes are not full replacements of their Java SE counterparts. In many cases, we
have trimmed down the API to keep the size smaller. For example, methods in XMLGregorianCalendar that rely
on GregorianCalendar are not present.

• Nillable elements are not supported. This is because they are implemented using generics.

Java SE 1.4
This section discusses XBinder's support for Java Standard Edition 1.4.

The standard XBinder runtime is for Java SE 1.5 and later. It uses some API features that are not present in JSE 1.4
(such as using StringBuilder rather than StringBuffer, in order to improve performance). For Java SE 1.4, you should:

• Use xbrt_jse14.jar rather than xbrt.jar

• Have JAXP 1.3. This provides some classes used by the runtime and/or generated code, including
javax.xml.namespace.QName and javax.xml.datatype.*. JAXP 1.3 was incorporated into Java SE 1.5, but not Java
SE 1.4.

• Use the -jse14 XBinder command line option, along with the -java option to generate code that is compatible with
Java SE 1.4.

You may choose whether to use the StAX API or XmlPull API. If you choose to use the XmlPull API, you will
need to use the -xpp option when generating code. Of course, you will need the JAR file for whichever API you
choose, along with an implementation of that API. You may opt to use the JARs in <XBINDER_HOME>\java\stax
or <XBINDER_HOME>\java\xmlpull.

Known Limitations
• Nillable elements are not supported. This is because they are implemented using generics.

54

Chapter 8. Miscellany

Canonical XML
XBinder can help you create documents that follow the W3C Canonical XML Recommendation. XBinder for C and
C++ have a -c14n command line option for this purpose. For Java and C#, however, you programmatically turn on
Canonical XML support by invoking the method setCanonicalXML() on your XBXmlEncoder object.

Turning on Canonical XML support has the following effects:

• Namespace declarations will appear before attributes.

• Namespaces declarations and attributes will be sorted.

• All start tags will have a matching end tag.

• Character escaping will be done according to Canonical XML (this is actually the standard behavior).

• The indendation and line terminators that are normally added to the encoding to improve readability will be omitted.

• The XML prolog will be omitted ("<?xml version="1.0" ...?>").

Additionally, you must take some care to comply with the Canonical XML recommendation. You must use UTF-8
character encoding (the zero argument constructor for XBXmlEncoder does this). You must not add superfluous name-
spaces into your complex-type objects. Finally, for mixed content and xml:any types (where you provide raw XML
that passes directly into the output), you must ensure that the raw XML you provide complies with the Canonical
XML recommendation.

Building Java Runtimes
Licensed versions of XBinder include the runtime source code for various Java and Java-like platforms. In your
installation's java folder, this source is available as runtime_src.zip. Unzipping this in the java folder will produce a
subfolder named build.

• java/build.xml is the Apache Ant build script to build the runtimes. The script was tested using Ant 1.8.0.

• In the java folder, run ant <target> where target is one of jse5_compile, jse4_compile, cldc_compile,
android_compile.

• For Android, the environment variable ANDROID_1_1 should be set to point to the Android 1.1 platform folder.

• For Java ME, thet environment variable JAVA_ME_HOME should be set to point to the Java ME SDK home.

