
XBinder
XML Schema Compiler

Version 2.7
C/C++ Users Guide

Reference Manual

Objective Systems, Inc. — August 2021

The software described in this document is furnished under a license agreement and may be used only in accor-
dance with the terms of this agreement.

Copyright Notice
Copyright ©1997–2021 Objective Systems, Inc. All rights reserved.
This document may be distributed in any form, electronic or otherwise, provided that it is distributed in its entirety

and that the copyright and this notice are included.

Author’s Contact Information
Comments, suggestions, and inquiries regarding XBinder may be submitted via electronic mail to info@obj-

sys.com.

iii

Table of Contents
1. XBinder Overview ... 1
2. Using XBinder .. 2

Running XBinder from the Command-line .. 2
Compiling and Linking Generated Code ... 12
Porting Run-time Code to Other Platforms .. 13
Getting Started with C or C++ Sample Programs .. 14
Getting Started with your own XML Schema .. 15

3. Generated C/C++ Source Code .. 17
Header (.h) File .. 17
C Code Generated for XSD Types ... 17
C Code Generated for XSD Global Elements ... 18
C Code Generated for Project-level Factory Decode/Validation Function .. 19
C Code Generated for WSDL Operation Input/Output/Fault Types ... 20
C++ Code Generated for XSD Types ... 21
C++ Code Generated for XSD Global Elements ... 22
C++ Code Generated for Project-level Factory Decode/Validation Function ... 23
C++ Code Generated for WSDL Operation Input/Output/Fault Types ... 25
C++ Code Generated for WSDL Operation Input/Output/Fault .. 27
Namespace Considerations ... 29

4. XSD Simple Type to C/C++ Type Mappings ... 31
Character String Types .. 32
Enumerated Type .. 34
Integer Types ... 36
Real Number Types .. 37
Binary String Types .. 38

Dynamic Case (no length facet): ... 39
Static Case (length restricted to 32K or less): ... 40

Date/Time Types .. 40
Boolean Type ... 41
Union Type ... 41
List Type .. 43

Unbounded Case ... 43
Bounded Case .. 44

5. XSD Complex Type to C/C++ Type Mappings .. 46
SEQUENCE .. 46

Optional Elements ... 47
Repeating Elements ... 48
Nillable Elements ... 50
Nested Types ... 52
Any Element .. 53

ALL ... 54
CHOICE ... 54

Generated C++ Get/Set Methods ... 56
Substitution Groups ... 58
Attributes .. 60
ComplexContent ... 61

Element Extension .. 61
Attribute Extension ... 65
Restrictions .. 66

SimpleContent .. 66
Extensions ... 67

XBinder C/C++ User's Guide

iv

Restrictions .. 67
Derivations .. 68
Group ... 69
Any Type .. 69

6. Configuration File ... 71
Binding Language ... 71

Binding Declaration .. 71
Version Attribute .. 71
Configuration File Language Overview ... 72
Global <bindings> Declaration .. 72
<schemaBindings> Declaration ... 73
<nodeBindings> Declaration ... 75
<typemap> Declaration ... 77

Advanced XML Names Transformation .. 77
XML Numeric Values Format Specification .. 77
Configuration File Example .. 79

7. Generated C Encode/Decode Functions .. 80
Preparing C Data Variables for Encoding .. 80

Dynamic Memory Management .. 80
Populating Generated Structure Variables for Encoding ... 80
Accessing Encoded Message Components .. 82

Generated XML Encode Functions .. 82
Generated C Function Format and Calling Parameters .. 82
Generated C Encode Functions for Global Elements .. 83
Generated C Encode Functions for WSDL Operations .. 84
Generated C Encode Functions for DOM Encoding ... 84
Procedure for Calling a Generated C Encode Function .. 84

Generated XML Decode Functions .. 87
Pull-Parser Based Decode Functions .. 87
SAX Based Decode Functions .. 90
Procedure for Calling C Decode Functions .. 92

Generated Validation Functions ... 95
Procedure for Calling C Validation Functions .. 96

Generated Print Functions .. 97
Generated Test Functions ... 98
Generated Identity Constraint Test Functions ... 99
Generated Reader and Writer Programs ... 100
Generated WSDL SOAP Stub Functions ... 101
Generated WSDL SOAP Skeleton Server and Client Programs .. 101
Generated SSL Stub Functions .. 102
Generated SSL Client Programs ... 102
Other Generated Functions .. 102

Initialization Functions ... 103
Memory Free Functions .. 103
Helper Functions ... 104

Generated Makefile ... 104
8. Generated C++ Class Methods .. 105

Preparing C++ Objects for Encoding .. 105
Dynamic Memory Management .. 105
Populating Generated Class Instances for Encoding .. 107

Generated XML C++ Encode Methods ... 109
Generated Method Format and Calling Parameters ... 109
Generated C++ Encode Methods for Global Elements ... 110
Generated C++ Encode Methods for WSDL Operations ... 110

XBinder C/C++ User's Guide

v

Procedure for Using the Generated C++ Encode Method ... 110
Generated XML C++ Decode Methods ... 112

Pull-Parser Based Decode Methods ... 112
SAX Based Decode Methods ... 113
Generated C++ Method Format and Calling Parameters ... 113
Procedure for Calling C++ Decode Methods ... 114

Generated XML C++ Validation Methods ... 116
Generated C++ Method Format and Calling Parameters ... 116
Procedure for Calling C++ Validation Methods ... 116

9. XBinder C Runtime Library ... 118
10. XML Run-time Library Functions ... 119

XML C Encode Functions .. 119
XML C Pull-Parser Based Decode Functions ... 120
XML C SAX Based Decode Functions ... 121
XML C SAX Parser Interface ... 121

LibXML2 .. 121
Expat .. 122
Micro Parser .. 122

XML C DOM Interface ... 122
11. JSON Run-time Library Functions .. 123

JSON C Encode Functions ... 123
JSON C Decode Functions ... 124

12. C Common Runtime Library .. 126
Common Include Files ... 126

osSysTypes.h .. 126
rtxCommon.h .. 127
rtxContext.h ... 127

Context Management Functions ... 128
Memory Management Functions .. 128

High Level Memory Management API .. 129
Low Level Memory Management API .. 131

UTF-8 String Functions .. 131
Doubly-Linked List Utility Functions ... 131
Error Formatting and Print Functions .. 132
Diagnostic trace functions ... 132
Input/Output Data Stream Utility Functions ... 132
TCP/IP or UDP socket utility functions ... 133
SOAP and HTTP utility functions .. 133

13. C++ Built-in Runtime Classes .. 135
Context Management Class ... 135
Message Buffer Classes .. 135
Global Element Base Class ... 136
XSD Type Base Classes ... 136
XML Parser Interface Classes ... 137

A. XBinder Error Codes ... 138
General Runtime Error Messages ... 138
XML-specific Status Messages .. 143

vi

List of Tables
4.1. Generated C code ... 35
4.2. Generated C++ code ... 35

1

Chapter 1. XBinder Overview
The XBinder code generation tool translates an XML Schema Definitions (XSD) or Web Services Definition Language
(WSDL) source file into computer language C, C++, Java, or C# source files. These source files contain an application
programming interface (API) that allows programatic data to be encoded to XML format and decoded to programatic
variables. Each variable is of a type that corresponds to a type, element, or attribute defined within the XML schema
document.

This manual discusses C/C++ code generation. Java and C# code generation are documented in the XBinder Java/C#
User's Manual.

Each XSD or WSDL source file results in the generation of the following C/C++ language files

• An include (.h) file containing C typedefs or C++ classes that represent each of the XSD types and global elements
contained within the XSD source file, or the XSD types and WSDL operation input/output elements contained
within the WSDL source file, and

• Multiple C/C++ source (.c/.cpp) files containing encode, decode, validation, and utility functions. One encode and
decode function is generated for each XSD type. Utility functions may be generated for a given type or element to
initialize, print, or generate test data.

• An optional makefile to build the generated code.

These files, when compiled and linked with the XBinder run-time encode/decode function library, provide a complete
package for working with XML encoded data

XBinder is compliant with the 2001 version of the W3C XML Schema standard (http://www.w3.org/ 2001/XM-
LSchema). The encode API functions generate valid, well-formed XML messages that are consistent with the encod-
ing procedures described in the standard. The decode API options are capable of decoding an instance of an XML
instance that complies with the schema definition.

2

Chapter 2. Using XBinder

Running XBinder from the Command-line
The XBinder distribution contains a command-line compiler executable. This section describes how to run the com-
mand-line version executable.

To test if XBinder was successfully installed, enter xbinder with no parameters as follows (note: if you have not
updated your PATH variable, you will need to enter the full pathname):

 xbinder

You should observe the following display (or something similar):

XBinder Compiler, Version 2.6.0
Copyright (c) 2002-2018 Objective Systems, Inc. All Rights Reserved.

Usage: xbinder <filename> options

 <filename> XML schema or WSDL source file name(s).
 Multiple filenames may be specified.
 * and ? wildcards are allowed.

 Language options (choose only one):
 -c Generate C code
 -c++ or -cpp Generate C++ code
 -c# or -csharp Generate C# code
 -java Generate Java code

 Basic options:
 -xml Generate XML encode/decode functions
 -config <file> Specify schema bindings file.
 -o <directory> Output file directory
 -I <directory> Import file directory
 -all Compile all dependent files
 -warnings Output compiler warning messages
 -compat <version> Generate code compatible with previous
 compiler version. <version> format is
 x.x (for example, 1.0)

 Options to reduce amount of generated code:
 -lax Generate code that does lax error checking
 -noderiv Do not generate special derived type code

 Options to alter generated code:
 -namespace Specify a namespace prefix for all generated items
 -nodatestamp Do not put date stamp in header
 -nomixed Do not generate string structure for mixed content
 -elemCasing <value> Set element name case to lower/upper
 -typeCasing <value> Set type name case to lower/upper

 Options for the generation of additional code:
 -genPrint or

Using XBinder

3

 -print Generate print functions

 C/C++ basic options:
 -dom Generate DOM encode/decode functions (C only)
 -json Generate JSON encode/decode functions (C only)
 -sax Generate SAX-based decoders (default is pull-parser)
 -modularize Handle included schemas as separate modules
 -nodecode Do not generate decode functions
 -noencode Do not generate encode functions
 -trace Add trace diag msgs to generated code

 C/C++ options to reduce amount of generated code:
 -compact Generate compact code
 -nocopy Do not generate copy methods (C++ only)
 -noheader Do not add code to encode XML header (<? xml ...)
 -noxmlns Do not generate code to support XML namespaces

 C/C++ options to alter generated code:
 -borland Generate special code for Borland C++ compiler
 -c14n Generate C14N format encode functions
 -cppns <ns> Add given C++ namespace to generated code (C++ only)
 -cppext <ext> Set file extension for generated C++ source files
 -derivModel <model> Set the derivation model to extended/interface
 -enumchoice Generate enum type for type selector for choice types
 -fragments Generate code to encode XML fragments
 (start element, contents, end element)
 -initlists Generate code that initializes lists to default
 (when possible)
 -noEncDefault Do not add schema default/fixed values to XML instance
 -noDefaultNs Do not use default namespace in XML instance
 -noNamedBits Do not generate named bits for EnumList,
 use regular list instead
 -numDateTime Use numeric structures for all date/time types
 -pdu <element> Designate element to be a PDU
 -project <prj_name> Set project name
 -soap, -soap12 Generate code to format/parse SOAP v1.2 messages
 -soap11 Generate code to format/parse SOAP v1.1 messages
 -static Generate code that uses static memory
 (when possible, C only)
 -strict Generate code that does strict syntax checking
 -useNSPfx Use XSD namespace prefixes in C/C++ code
 -useflteq Use float equality functions to ignore rounding
 errors in floating-point comparisons
 -use-qt [QList | QLinkedList | QVector | QVarLengthArray]
 Use Qt classes for strings and lists, using the given
 Qt collection class as the default for lists. Default
 is QLinkedList.
 -usestl Use C++ Standard Template Library (STL)
 -noenumvars Do not generate fields using generated enum types;
 revert to prior behavior (generate OSUINT16 instead)
 -w64 Generate Visual Studio project files for a 64-bit
 XBinder installation
 -x64 Generate code using 64-bit integers for lengths on
 64-bit systems

Using XBinder

4

 C/C++ options for the generation of additional code:
 -getset Generate C++ getters and setters
 -genWriter Generate writer test program
 -genReader Generate reader test program
 -genFree Generate memory free functions (C only)
 -genFactory Generate Factory functions
 -genRWTest Generate read/write test program
 -genStubs Generate SOAP client stub functions from WSDL
 -genSkel Generate SOAP skeleton server program from WSDL
 -genClient Generate web service client test program from WSDL
 -genSSLClient Generate a secure HTTP client test program using OpenSSL
 -genSSLStubs Generate secure HTTP stub functions using OpenSSL
 -genTest [<xmlfile>] Generate test code. If XML instance provided,
 this will be used; otherwise, random data
 -genValid Generate validation functions
 -usePDU <element> Use PDU for writer/reader test program
 -w32 Use with '-genMake' to generate Windows NMAKE file
 (default = GNU)

 C/C++ options for makefile or project generation:
 -genMake Generate makefile
 -genMakeLib [<libname>] Generate code in makefile to put all objects
 into a static library
 -genMakeDLL [<dllname>] Generate code in makefile to build shared object
 -genvcproj [version] Generate Visual Studio C/C++ project files
 [version] is 2017, 2015, 2013, 2012, 2010, 2008, 2005, 2003,
 vc6 (Windows only)
 -makeopts <dynamiclib | staticlib | multithreaded>
 Use compilation options for dynamic, static, and multithreaded
 libraries.

 C/C++ compression options:
 -zip Add code to generated reader/writer to use
 standard gzip compression (requires zlib install)

 C# extra options:
 -csfile <name> Specifies one .cs file for all generated code
 Set <name> to '*.cs' for one .cs file per .xsd file
 -csnsname <name> Name for C# namespace
 -csnspfx <prefix> C# namespace names will be this prefix, followed by
 schema name
 -genMake Generate makefile
 -genWriter Generate writer test program
 -genReader Generate reader test program
 -genvcproj <version> Generate Visual Studio C# project files
 <version> is 2017, 2015, 2013, 2012, 2010, 2008, 2005 (Windows only)
 -nocsgetset Generate properties only, no getter/setter methods
 -usePDU <element> Use PDU for writer/reader test program

 Java extra options:
 -pkgname <name> Name for Java package
 -pkgpfx <prefix> Java package names will be this prefix, followed by
 schema name

Using XBinder

5

 -genMake Generate Apache Ant buildfile (build.xml)
 -genWriter Generate writer test program
 -genReader Generate reader test program
 -usePDU <element> Use PDU for writer/reader test program
 -xpp Use XmlPull API rather than StAX (StAX is default)

To use the compiler, at a minimum, a single XSD or WSDL source file must be provided along with at least one set
of encoding rules and a target output language. The current version of XBinder supports the generation of C (-c), C+
+ (-cpp), C# (-csharp), or Java (-java) source code and the generation of code to encode/decode to/from XML (-xml),
DOM (-dom), or JSON (-json).

The source file specification can be a full pathname or only what is necessary to qualify the file. If directory information
is not provided, the user's current default directory is assumed. Multiple source filenames may be specified on the
command line to compile a set of files. The wildcard characters ‘*’ and ‘?’ are also allowed in source filenames (for
example, the command ‘xbinder *.xsd -c -xml’ will compile all XSD files in the current working directory).

The following table lists all of the command-line options for C/C++ in alphabetical order. Java/C# command-line
options are documented in the XBinder v2.2 Java/C# User Manual.

Option Argument Description

-all None Generate code for all dependent files in a given compila-
tion. This includes the main XSD files specified on the
command line as well as all imported and included schema
files.

-borland None Generate special code for Borland C++ compiler.

-c None Generate C source code.

-c++ -cpp None Generate C++ source code.

-c14n None Generate encode functions which use Canonical XML
(http:// www.w3.org/TR/xml-c14n) mode by default.

-compact None Generate more compact code. This is useful for generat-
ing code for embedded applications where code-size foot-
print is important. The main optimization made to gener-
ate more compact code is the omission of error message
text and parameter code.

The -lax option can also be used to reduce the amount of
generated code.

-compat <version> Generate code that is compatible with an older version of
the XBinder compiler. The format of the version number
is “n.n” (for example, 1.0).

-config <filename> This option is used to specify the name of a file containing
configuration information for the source file being parsed.
This is similar to the ‘binding schema’ used with some
other XML data binding applications.

-cppns <name> This option is used to specify a C++ namespace declara-
tion to be added to generated code. A configuration file en-
try can be used to specify particular C++ namespaces for
parts of your schema. See the discussion on <cppName-
space> elements under <schemaBindings>.

-dom None Encode to or decode from a Document Object Model
(DOM) tree structure instead of directly to/from XML text

Using XBinder

6

Option Argument Description

format. This allows processing unique to DOM to be done
prior to serialization/deserialization (for example, XPath
searches).

Note that this option is currently only available with C
code generation (not C++).

-elemCasing lower or upper This option is used to change the case of the first letter in
element names in the C or C++ code from what is speci-
fied in the XSD file. This option is typically used when the
XSD file contains type, element, and/or attribute names
that are the same. It provides a way to make the name dis-
ambiguous in the generated C or C++ code. Typically, el-
ement names are set to lower case.

See -typeCasing for changing the case of type names.

-enumChoice none This option is used to cause XBinder to generate and use
enum types as the "selector" type for choice-related types.
This includes choice groups, union types, and classes gen-
erated to support element substitution groups and type de-
rivation. It is useful for improving type safety.

-fragments None Generate additional encode functions that allow fragments
(parts) of an XML document to be created without having
to create an entire document. The start element, contents,
and end element fragments for any given type can be cre-
ated using these functions. This is useful for stream-ori-
ented protocols such as XMPP.

-genclient None Generate a sample web services client program. This op-
tion must be used with option -genTest. The sample client
program populates a request messasge with test data,
sends to the server, and waits to receive the response mes-
sage.

-genfree None Generate memory free utility functions. Memory free
functions are C functions that allow all memory within a
given structure to be freed. It is possible to free memory
without these functions by using the rtxMemFree function
on a context. This frees all memory held by the context.
But some applications require the capability to free the
memory associated with a given structure.

-genmake None Generate a makefile to build the generated code. The
makefile is compatible with either the GNU make utili-
ty or the Visual Studio nmake utility. A Windows Visu-
al Studio nmake file is generated if -w32 is added to the
command-line.

-genmakelib <libname> (optional) Generate a makefile to put objects into a static library
named <libname>. If <libname> is omitted, the parent di-
rectory name would be used as the base name for the li-
brary.

Using XBinder

7

Option Argument Description

-genmakedll <dllname> (optional) Generate a makefile to build a shared object named <dll-
name>. If <dllname> is omitted, the parent directory name
would be used as the base name for the DLL.

-genreader None Generate a complete reader program similar to what can be
found in the sample subdirectory. This program will read
an encoded XML document from an input file, decode it,
and then print the decoded field values to standard output.

-genrwtest None Generate a read/write test program. This program will read
an XML document corresponding to a specified global el-
ement definition in the compiled schema document, de-
code it, and then re-encode it and write it to an output file.

-genskel None Generate a server skeleton program. This option must be
used with option -genTest. The skeleton server receives
a request message, populates response message with test
data, and sends the response message back to the client. A
stub (empty) function is generated for each WSDL opera-
tion. These functions should be supplied by the Web Ser-
vice developers. In the generated server code, some com-
ments are put in place for calling of the these functions.

-genSSLClient None Generate a secure HTTP client test program using
OpenSSL. This option must be used with option -genTest.
Note: this assumes OpenSSL is in place on the target plat-
form. The client test program opens a TCP connection to
port 443 on server. The server hostname is provided by
option -hostname of the client program, and the port num-
ber can be changed using -port option of the client. The
client then initiates the SSL handshake over the TCP con-
nection; and sends HTTP request over SSL.

-genSSLStubs None Generate secure HTTP stub functions using OpenSSL.
A stub function sends a request to a server over
SSL and then turns around and waits for a re-
sponse. The stub functions can be called from a
test client program. The functions are written to the
<modulename>WSDLSSLClientStubs.c(pp) file where
<modulename> is the base name of the WSDL source file
that was parsed.

-genstubs None Generate stub functions. A "stub", in web service terms, is
a function that works like a remote procedure call. It sends
a request to a server and then turns around and waits for
a response. The stub functions can be called from a test
client program for a web service. The functions are written
to the <modulename>WSDLSoapClientStubs.c file where
<modulename> is the base name of the WSDL source file
that was parsed.

-gentest <xmlfile> (optional) Generate test utility functions. Test functions populate an
instance of each global element defined within a schema
with random test data to be encoded. The functions pro-
vide a good template for writing code to populate the gen-
erated programatic variables. The functions are written to

Using XBinder

8

Option Argument Description

<modulename>Test.c files where <modulename> is the
base name of the XSD source file that was parsed.

If the optional XML filename argument is provided, the
generated test functions will use data from the given XML
instance instead of generating random test data.

-genvalid None Generate validation functions. These functions are
used to validate a given XML instance against
the compiled schema. The functions are written to
<modulename>Vldt.c files where <modulename> is the
base name of the XSD source file that was parsed.

-genvcproj <vc6|2003|2005|2008|2010|
2012|2013|2015|2017|
2019> (optional)

This option instructs the compiler to generate Visual C++-
or Visual Studio-compatible project files to compile gen-
erated source code. This is a Windows-only option. By
passing one of the listed Visual Studio versions, the com-
piler will generate a project that links against libraries pro-
vided for those versions of Visual Studio. For example,
specifying 2010 will generate a project that links against
libraries in the *_vs2010 directory. Not specifying a
year will cause the compiler to link against libraries com-
piled for Visual Studio 2015.

-genwriter None Generate a complete writer test program similar to what
can be found in the sample subdirectory. This program
will populate a record with test data, encode the data into
XML, and then write the encoded record to an output file.

-getset None Generate C++ getter and setter methods.

-I <directory> This option is used to specify a directory that will be
searched for XSD <import> and <include> items. Multi-
ple –I qualifiers can be used to specify multiple directories
to search.

-initlists None Generate linked list initialization functions for complex
types that have a repeating element with a default value.

-lax None This option causes decode/validation functions to be gen-
erated that contain less schema-validation error checking
code:

• Decoding continues when a required attribute is miss-
ing.

• Decode/validation functions do not contain pat-
tern/facets/MinMaxOccurs/datetime tests.

• Decoded enumerated value is not verified to be within
the defined numeration set.

• If an attribute has fixed value and content is decoded,
do not verify the content matches the fixed value.

• Decode sequence in lax mode.

Using XBinder

9

Option Argument Description

This can be useful for working with XML documents that
are not completely valid with regards to the schema.

-modularize None This option is used when XSD <include> directives are
included in a schema to tell the processor to put the gen-
erated code in separate output files based on the include
file names. The default behavior if this is not used is to
include all of the code in the main file that is including the
definitions. This can only be used if the included files can
be successfully compiled on their own (i.e. are not depen-
dent on definitions from the parent module).

-namespace <prefix> Add the given prefix to all generated items (typedefs and
functions). This makes it possible to disambiguate items
with the same names that are in different schemas. Note
that the - useNSPfx option can be used to use namespace
prefixes that are defined in the XSD document for this pur-
pose (see the description of this option below).

-nodatestamp None Do not insert a date stamp in the header of each generated
file. This can be useful when using a source control system
to prevent identical source files from appearing different.

-noencode None Do not generate encode functions.

-nodecode None Do not generate decode functions.

-noDefaultNS None Do not use default namespace in XML instance.

-noderiv None Suppress generation of extra code for run-time derived
type handling. This code makes it possible to decode com-
plexContent types using xsi:type declarations.

-noenumvars None Do not generate fields using generated enum types; revert
to prior behavior (generate OSUINT16 instead). This may
save some space when used with some compilers.

-noheader None Do not add an XML header to generated documents. This
the first line in the document that begins with ‘<?xml’.

-nomixed None Do not generate a special structure to hold mixed content
items. The generated code will more closely match the
schema layout. However, mixed content will not be sup-
ported.

-noNamedBits None Do not generate a named bits structure for enumerated list
items. Many application use an XSD list of enumerated
items to express a bit map like structure for the specifica-
tion of properties. By default, XBinder generates a corre-
sponding bit structure to make setting the properties eas-
ier. However, some applications may have a need to re-
peat an enumerated item in a list more than one time. In
this case, specification of this option will cause a standard
linked list structure to be used.

-noxmlns None Do not generate namespace attribute lists in all generated
C structures. In general, advanced namespace processing
is not needed for many applications and the addition of the

Using XBinder

10

Option Argument Description

namespace attributes lists adds a considerable amount of
size to the code.

-numDateTime None Use numeric date/time structures for all XSD data/time
types (date, time, dateTime). The default is to use strings
for these items.

-o <directory> This option is used to specify the name of a directory to
which all of the generated files will be written.

-pdu <element> Recognize the given global element as a protocol data unit
(PDU). A PDU is a main message type in the module for
which encode and decode functions are generated. By de-
fault, the compiler only recognizes non-referenced global
elements as PDU’s. This allows this default behavior to
be overridden.

-print None Generate print utility functions. Print functions are debug
functions that allow the contents of generated type vari-
ables to be written to stdout. The functions are written to
<modulename>Print.c files where <modulename> is the
base name of the XSD source file that was parsed.

-project <name> Set project name. By default, parent directory name is the
used for the project name.

-sax None Generate SAX handlers for decoding XML documents.
Prior to XBinder version 1.2, this was the default (and on-
ly) method for decoding XML messages. XBinder 1.2+
uses a pull-parser by default for XML decoding.

-soap None Generate additional code to add or parse SOAP envelope,
body, and fault tags in XML messages. This allows the
messages to be used in a SOAP client or server applica-
tion. The version of SOAP supported by this option is set
to the highest version currently supported by the applica-
tion. This is currently version 1.2.

-soap11 None Generate additional code to add or parse SOAP 1.1 enve-
lope, body, and fault tags in XML messages. This allows
the messages to be used in a SOAP 1.1 client or server
application.

-soap12 None Generate additional code to add or parse SOAP 1.2 enve-
lope, body, and fault tags in XML messages. This allows
the messages to be used in a SOAP 1.2 client or server
application.

-static None This option instructs the compiler to use static memory
whenever possible when generating C source code. The
array’s size will be determined by the type’s maxLength
or length facet.

-strict None This option causes encode/decode/validation functions to
be generated that does strict syntax checking:

• Validate a UTF-8 string before encode it. If the the
string is not correctly encoded in UTF-8, encoding stops
and returns an error.

Using XBinder

11

Option Argument Description

• When an invalid enum value is encountered during de-
coding, decoding stops immediately and returns an er-
ror.

-trace None Add trace diagnostic messages to generated code. These
messages cause printf statements to be added to print entry
and exit information into the generated functions. This is
a debugging option that allows encode/decode problems
to be isolated to a given production processing function.
Once the code is debugged, this option should not be used
as it adversely affects performance.

-typeCasing lower or upper This option is used to change the case of the first letter in
type names in the C or C++ code from what is specified in
the XSD file. This option is typically used when the XSD
file contains type, element, and/or attribute names that are
the same. It provides a way to make the name disambigu-
ous in the generated C or C++ code. Typically, type names
are set to upper case.

See -elemCasing for changing the case of element names.

-useNSPfx None Add namespace prefixes defined in the XSD source files
to the generated C/C++ names. The format of the names
generated when this is specified is <prefix>_<name>. This
is useful when an XSD specification consists of multi-
ple shemas defined in multiple namespaces and the same
names are used for entities across the specifications but
within different namespaces. This prevents name colli-
sions in the generated code at the expense of creating more
verbose names.

-useflteq None Generate code which uses functions that account for a
small margin of error to compare floating-point numbers.

-usepdu <element> This option causes the given protocol data unit (i.e. global
element) to be used as the basis for generated reader and
writer programs. If not specified and the compiled schema
contains multiple unreferenced global elements, a global
element will be chosen at random.

-use-qt [QLinkedList | QList |
QVector | QVarLengthAr-
ray] (optional)

Use Qt classes for strings and lists. For lists, uses the given
Qt collection class as the default. If a default collection is
not given, QLinkedList is used. The choice of Qt collec-
tion classes can be further refined via a configuration file.

-usestl None Use Standard Template Library (STL) classes (currently,
std::string and std::vector) in generated C++ code. By de-
fault, STL is not used in generated code.

-warnings None Output information on compiler generated warnings.

-w32 None Indicate code generation is being done for use on the Win-
dows operating system. For example the backslash char-
acter (\) is used as a path separator instead of forward slash
(/). The format of the generated makefile is also in Visual
Studio nmake format (see -genmake above).

Using XBinder

12

Option Argument Description

-w64 None Similar to the -w32 option except that any generated
project files specify x64 as the platform instead of Win32,
and references to libraries look in folders that end in _64.

-x64 None Generate code using 64-bit integers for lengths on 64-
bit systems. This affects dynamic arrays (field n) and
base64Binary and hexBinary strings (field numocts or OS-
DynOctStr).

-xml None Generate encode/decode functions that marshall progra-
matic data to and from XML format.

-xpp None Java option that causes the XmlPull API to be used rather
than StAX.

-zip None Add standard gzip compression function calls to generat-
ed reader and writer programs. This requires that zlib be
installed on the target system.

Compiling and Linking Generated Code
C/C++ source code generated by the XBinder compiler can be compiled using any ANSI standard C or C++ compiler.
The only additional option that must be set is the inclusion of the XBinder C/C++ header file include directory with
the –I option.

When linking a program with compiler-generated code, it is necessary to include the XBinder common run-time
library (osysrt) and the XBinder XML run-time library (osysrtxml). If the -sax option was specified, a third-party
XML parser library is also required. When including an XML parser library, it is also necessary to link with an object
file that provides a common abstraction layer to different vendor implementations. The distribution contains object
files to interface with the EXPAT XML parser (http://www.libexpat.org) and the libxml2 XML parser library (http://
xmlsoft.org). These files are named rtXmlExpatIF.obj and rtXmlLibxml2IF.obj respectively (note: different variations
of this object file exist for the different library configurations described below). It is possible to create your own
implementation of this interface file if linking with a different XML parser library is desired. Source code is provided
for the default implementations which can be used as a guide for writing your own implementation. See the XML
Parser Interface section for details on this interface.

If the -dom option was specified, the DOM library (osysrtdom) is also required. Using the -dom option implies using
the -sax option, so an XML parser library and interface object must also be included as described above. A DOM API
library must also be used. XBinder includes a DOM API library (osysrtdomapi) which interfaces with the libxml2
XML parser library. You may also write your own implementation using another XML parser library. See the XML
C DOM Interface section for more details on this interface.

For static linking on Windows systems, the names of the library files are osysrt_a.lib and osysrtxml_a.lib. On UNIX/
Linux, the library names are libosysrt.a and libosysrtxml.a. The library files and XML library interface object files
are located in the lib subdirectory. For UNIX, the –L switch should be used to point to the subdirectory path and –
losysrtxml and –losysrt used to link with the libraries. For Windows, the –LIBPATH switch should be used to specify
the library path.

There are several other variations of the C/C++ run-time library files and XML parser library interface files for Win-
dows. The following table summarizes what options were used to build each of these variations:

Library Files Description

osysrt_a.lib
osysrtxml_a.lib

Static single-threaded libraries. These are built with the –
ML option. These are not thread-safe. However, they pro-

Using XBinder

13

Library Files Description

osysrtdom_a.lib
osysrtjson_a.lib
rtXml<lib>IF_a.obj

vide the smallest footprint of the different libraries. (Note:
<lib> would be replaced with the name of the XML parser
library to be used. For example, rtXmlExpatIF_a.obj for
the EXPAT library.)

osysrtxml.lib rtXml<lib>IF.obj DLL libraries. These are used to link against the XBinder
run-time DLL library (osysrtxml.dll). Note that this single
DLL holds code from all of the individual libraries that
may be used when linking statically.

osysrtmt_a.lib osysrtxmlmt_a.lib osysrtdommt_a.lib
osysrtjsonmt_a.lib rtXml<lib>IFmt_a.obj

Static multi-threaded libraries. These libraries were built
with the – MT option. They should be used if your appli-
cation contains threads and you wish to link with the static
libraries (note: the DLL’s are also thread-safe).

osysrtmd_a.lib osysrtxmlmd_a.lib osysrtdommd_a.lib
osysrtjsonmd_a.lib rtXml<lib>IFmd_a.obj

DLL-ready multi-threaded libraries. These libraries were
built with the –MD option. They allow linking additional
object modules in with the XBinder run-time modules to
produce larger DLL’s.

For dynamic linking on UNIX/Linux, a shared object version of each run-time library is included in the lib subdirectory.
This file typically has the extension .so (for shared object) or .sl (for shared library). See the documentation for your
UNIX compiler to determine how to link using these files (it varies for different types of UNIX systems). Typically,
if a shared object version of a library exists in the linker library path, the linker will choose it over the static archive
library version. So if you want to link with the static libraries, it is usually sufficient to move the shared object files
somewhere else (or delete them).

The XBinder distribution contains some utilities to make the creation of build scripts easier. These utilities are as
follows:

• A -genmake command line option to generate a sample makefile to build the files generated by a specific compilation,
and

• Make include files (file ending with extension .mk) that contain common symbols for many of the options described
above.

The –genmake option will cause a makefile to be created that will compile all of the generated source files into object
files using the configured C or C++ compiler (the compiler is configured in the platform.mk file, see below). This
makefile will contain dependencies for all included header files. The default generated makefile will be compatible
with the GNU make utility and should be portable to most UNIX/Linux systems. The –w32 command line switch can
be used to generate a makefile that is compatible with the Microsoft Visual Studio nmake utility.

The two primary make include files are platform.mk and xmlparser.mk. The platform.mk file contains all of the
common definitions for a particular platform. These include the C or C++ compiler and linker to be used and the
compile/link options. The xmlparser.mk file contains common definitions for interfacing with an XML parser library.
It is possible to change XML parser library implementations by simply changing the definitions in this file.

See the makefile in any of the sample subdirectories of the distribution for an example of what must be included to
build a program using generated source code.

Porting Run-time Code to Other Platforms
The run-time source version of XBinder includes ANSI-standard source code for the base run-time libraries. This
code can be used to build binary versions of the run-time libraries for other operating environments. Included with the

Using XBinder

14

source code is a portable makefile that can be used to build the libraries on the target platform with minimal changes.
All platform-specific items are isolated in the platform.mk file in the root directory of the installation.

The procedure to port the run-time code to a different platform is as follows (note: this assumes common UNIX or
GNU compilation utilities are in place on the target platform).

1. Create a directory tree containing a root directory (the name does not matter) and lib, src, rt*src, and build_lib
subdirectories (note: in these definitions, * is a wildcard character indicating there are multiple directories matching
this pattern).

2. Copy the files ending in extension “.mk” from the root directory of the installation to the root directory of the target
platform (note: if transferring from DOS to UNIX or vice-versa, FTP the files in ASCII mode to ensure lines are
terminated properly).

3. Copy all files from the src and the different rt*src subdirectories from the installation to the src and rt*src directories
on the target platform (note: if transferring from DOS to UNIX or viceversa, FTP the files in ASCII mode to ensure
lines are terminated properly).

4. Copy the makefile from the build_lib subdirectory of the installation to the build_lib subdirectory on the target
platform (note: if transferring from DOS to UNIX or vice-versa, FTP the files in ASCII mode to ensure lines are
terminated properly).

5. Edit the platform.mk file in the root subdirectory and modify the compilation parameters to fit those of the compiler
of the target system. In general, the following parameters will need to be adjusted:

 CCC compiler executable name
 CCCC++ compiler executable name
 CFLAGS_Flags that should be specified on the C or C++ command line

The platform.w32 and platform.gnu files in the root directory of the installation are sample files for Windows 32
(Visual C++) and GNU compilers respectively. Either of these can be renamed to platform.mk for building in either
of these environments.

6. Invoke the makefile in the build_lib subdirectory.

If all parameters were set up correctly, the result should be binary library files created in the lib subdirectory.

Getting Started with C or C++ Sample Pro-
grams
To begin using XBinder to generate C source code, one should start with the sample programs. These are located in the
c/sample or cpp/sample subdirectories of the installation. A good sample program to get started with is the Employee
sample program. This program contains an XML schema file that describes an employee personnel record.

To run this sample program from the command-line interface, the following procedure should be followed:

1. Open an MS-DOS or other command shell window.

2. Change directory (cd) to the employee sample directory:

 cd c/sample/Employee

Note: this assumes the starting point is the XBinder installation root directory.

3. Execute the nmake (Windows) or make (Linux/UNIX) utility program to build the program:

Using XBinder

15

 nmake

Note: nmake is a make utility program that comes with the Microsoft Visual C++ compiler. It may be necessary
to execute the batch file vcvars32.bat that comes with Visual C++ in order to set up the environment variables to
use this utility.

4. This should cause the XBinder compiler to be invoked to compile the employee.xsd XML schema file. It will then
invoke the configured C compiler to compile the generated C file and test drivers. The result should be a writer.exe
and reader.exe program file which, when invoked, will encode and decode a sample employee record.

5. Invoke writer from the command line:

 writer

6. This will generate an encoded record and write it to a disk file. By default, the file generated is message.xml. The
test program has a number of command line switches that provide encoding options. To view the switches, enter
writer ? and a usage display will be shown.

7. Invoke reader from the command line:

 reader

8. This will read the disk file that was just created by the writer program and decode its contents. The resulting decoded
data will be written to standard output. The test program has a number of command line switches that provide
decoding options. To view the switches, enter reader ? and a usage display will be shown.

The procedure to run a C++ sample program is the same except that you would start in one of the cpp/ sample direc-
tories. The same procedure applies: execute the make utility and then run the writer and reader programs.

Getting Started with your own XML Schema
The quickest way to get up and running with your own XML schema file or set of files is to let XBinder generate a
sample program for you. This is done using the -genwriter and/or -genreader command-line options. These options
cause a complete writer and/or reader program to be generated and, when used in combination with -genmake, cause
a makefile to be generated to build the entire project.

For example, suppose you had a schema file named mySchema.xsd that you wanted to generate encoders and decoders
for. The following command could be used to generate a complete set of C source files for this schema (note: C++
source files could be generated simply by changing -c to -c++ in this command):

 xbinder mySchema.xsd -c -xml -print -genwriter -genreader -genmake

After generation is complete, all that needs to be done is execution of the generated makefile with the make utility
program and all of the files will be compiled and linked to form reader and writer executable files. Note that if this is
being done on Windows, the -w32 option should be added to generate a makefile that is compatible with the Visual
C++ nmake utility.

The generated writer program contains a “TODO” section where code needs to be added to populate a variable of the
given data type for encoding. If test code generation (-gentest) is specified, the writer will call a generated test function
to automatically populate the test variable.

The generated files can now act as a template on which you can base your own development. The generated
mySchemaTest.c (or .cpp) file contains the complete logic necessary to populate a data record corresponding to your
schema.

Using XBinder

16

If -gentest was specified without any arguments, the test file contains random data. This code generation can
be taken a step further if you have a sample of an XML instance that matches your schema (say, for example,
mySchemaInstance.xml). In this case, you can add

 -gentest mySchemaInstance.xml

to the command line and test source code will be generated that populates a structure with data from the test instance.

When reader and writer programs are generated, the XSD global element that is used as the basis for the program (i.e.
the main variable that is read from or written to) is the first Protocol Data Unit item that is encountered. This may not
always be the item you want to use. In this case, the -usepdu command-line option can be used to select the protocl
data unit (i.e. global element) you want to use in the generated test code.

17

Chapter 3. Generated C/C++ Source Code

Header (.h) File
The generated C/C++ include file contains a section for each XSD type defined in the XSD source file. In general, there
is a one-to-one correspondence between types defined in the XSD file and generated C type or C++ class definitions.
In some cases, however, extra types/classes are generated to support certain XSD types. This occurs on XSD complex
type definitions when the element nesting level is greater than two (see the section on Complex Types for details).

In addition to XSD types, code is also generated for global element definitions. If no other type references a global
element, it is considered to be a main message element (also known as a protocol data unitor PDU). These elements
are encoded into the main XML documents or messages that make up the given specification. An entry point encode
and decode function is generated for each of these elements. The header file contains the function prototypes for these
functions.

Many XSD-based protocols specify multiple global element declarations that describe different XML document types
that may be exchanged in a transaction. When a message type is not known in advanced, it is necessary to parse the
outer level tag of a document in order to determine the correct decode and/or validation function to invoke. The -gen-
Factoryoption can be used to generate a factory class to automate this process. When option -genFactoryis specified,
additional code is generated for factory C type or C++ class definitions. A factory decode/validation/print fucntion is
also generated. The header file contains the function prototypes for these functions.

With a WSDL file, if binding information is available (i.e. binding section is present in the WSDL definition file),
C/C++ code is generated for WSDL Operation input/oputpt/fault types, and C++ control classes are generated for
WSDL Operation input/output/fault. There is a one-to-one correspondence between operation input/output defined
in the binding section and the generated C type or C++ class definitions. C type or C++ class definitions are also
generated for operation fault to define the default fault information (for example, faultcode, faultstring and faultactor
for SOAP 1.1) and fault detail information. If operation fault is defined in binding, extra types/classes are generated
to support the fault detail.

C Code Generated for XSD Types
If C code generation is selected, the following items are generated for each XSD type:

• C type definition

• Encode function prototype

• Decode function prototype

• Initialization function prototype

• Other function prototypes depending on selected options (for example, print)

A sample section from a C header file is as follows:

 /**
 * Name
 */
 typedef struct EXTERN Name {
 OSXMLSTRING givenName;

Generated C/C++ Source Code

18

 OSXMLSTRING initial;
 OSXMLSTRING familyName;

 /* namespace attributes - list of OSXMLNamespace */
 OSRTDList _nsAttrs;
 } Name;

 EXTERN int XmlET_Name
 (OSCTXT* pctxt, Name* pvalue,
 const OSUTF8CHAR* elemName, OSXMLNamespace* pNS);

 EXTERN int XmlDT_Name (OSCTXT* pctxt, Name* pvalue);

 EXTERN int XmlVT_Name (OSCTXT* pctxt);

 EXTERN int Init_Name (OSCTXT* pctxt, Name* pvalue);

 EXTERN void Print_Name (const char* name, Name* pvalue);

This corresponds to the following XSD type definition:

 <xsd:complexType name="Name">
 <xsd:sequence>
 <xsd:element name="givenName" type="xsd:string"/>
 <xsd:element name="initial" type="xsd:string"/>
 <xsd:element name="familyName" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

In this case, the NameC struct typedef corresponds to the NameXSD complex type definition.

The XmlET_Namefunction prototype is the XML encode function for the type. The XmlDT_Namefunction is the pull-
parser decode function for this type. The XmlVT_Namefunction is the pull-parser validation function for this type
(only generated if -genvalidwas specified). If -saxwas specified, there would be no generated type function because
decoding is handled by SAX handler functions.

The Init_Namefunction prototype is the declaration of the initialization function for this type. This function is called
to initialize a variable of the type before encoding or decoding. It initializes all fields to zero or to the field's fixed or
default value as specified in the XSD source file.

The Print_Namefunction prototype is for a print utility function. This is an optional function that was generated by
using the -printcommand line qualifier. It prints the contents of a variable of the generated type to the standard output
device.

C Code Generated for XSD Global Elements
At the end of the header file are the function prototypes corresponding to global elements that are not referenced by
any other type definitions. These are global elements that are not used in any other type definitions via the refattribute
(for example, <complexType name="SomeType" ref="SomeGlobalElement"/>). A sample global element section is
as follows:

 /**

Generated C/C++ Source Code

19

 * Global element functions. These functions encode or
 * decode complete XML documents. They are generated for global
 * elements that are either:
 *
 * 1) not referenced by any other types, or
 * 2) explicitly declared to be a PDU using the -pdu command line
 * option, or
 * 3) explicitly declared to be a PDU using the <isPDU/>
 * configuration file element.
 */
 EXTERN int XmlE_personnelRecord
 (OSCTXT* pctxt, PersonnelRecord* pvalue);

 EXTERN int XmlD_personnelRecord
 (OSCTXT* pctxt, PersonnelRecord* pvalue);

In this case, the global element function prototypes correspond to the following global element declaration in the XSD
file:

 <xsd:element name="personnelRecord" type="PersonnelRecord"/>

This element is not referenced by any other types in the specification. Encode and decode function prototypes are
generated for the declaration. See the section on Calling Generated C Encode and Decode Functionsfor a step-by-
step description on how to call these functions.

C Code Generated for Project-level Factory De-
code/Validation Function
If -genFactoryoption is specified and C code generation is selected, the following items are generated:

• C type definitions

• Decode function prototype

• Validation function prototype (if -genValidoption is specified)

• Print function prototype (if -printoption is specified)

 // element tags
 enum {
 T_callingDevice = 1,
 T_calledDevice = 2,
 T_lastRedirectionDevice = 3,
 ...
 } ;
 #define Num_Global_Elem_CSTA_Project 19

 typedef struct EXTERN CSTA_message {
 OSUINT16 t;
 union {
 /* t = 1 */

Generated C/C++ Source Code

20

 struct CallingDeviceID *callingDevice;
 /* t = 2 */
 struct CalledDeviceID *calledDevice;
 /* t = 3 */
 struct RedirectionDeviceID *lastRedirectionDevice;
 ...
 } u;
 } CSTA_message;

 /**
 * Decode factory function. This function
 * decodes complete XML document when the message type
 * is unknown.
 */
 EXTERN int XmlD_Project_CSTA (OSCTXT* pctxt, CSTA_message* pvalue);

 /**
 * Validate factory function. This function
 * validates complete XML document when the message type
 * is unknown.
 */
 EXTERN int XmlV_Project_CSTA (OSCTXT* pctxt);

 EXTERN void Print_Project_CSTA (const char* name, CSTA_message* pvalue);

 extern const char* global_elem_names_CSTA_Project[];

C Code Generated for WSDL Operation In-
put/Output/Fault Types
If C code generation is selected, the following items are generated for each WSDL Operation input/ output/fault types:

• C type definition

• Encode function prototype

• Decode function prototype

• Initialization function prototype

• Other function prototypes depending on selected options (for example, print)

 /**
 * WSDL operation definitions
 */
 typedef struct EXTERN Add_Input {
 Operands_ELEM Operands;
 } Add_Input;

 typedef struct EXTERN Add_Output {
 OSREAL Result;

Generated C/C++ Source Code

21

 } Add_Output;

 typedef struct EXTERN Add_Fault {
 struct {
 unsigned faultactorPresent : 1;
 unsigned detailPresent : 1;
 } m;
 OSXMLSTRING faultcode;
 OSXMLSTRING faultstring;
 OSXMLSTRING faultactor;
 OSXSDAnyType detail;
 } Add_Fault;

 EXTERN int XmlE_Add_Input (OSCTXT* pctxt, Add_Input* pvalue);
 EXTERN int XmlD_Add_Input (OSCTXT* pctxt, Add_Input* pvalue);
 ...
 EXTERN int XmlE_Add_Output (OSCTXT* pctxt, Add_Output* pvalue);
 EXTERN int XmlD_Add_Output (OSCTXT* pctxt
 , Add_Output* pvalue, Add_Fault* pfault);
 ...
 EXTERN int XmlE_Add_Fault (OSCTXT* pctxt, Add_Fault* pvalue);

This corresponds to the following WSDL portType and binding definitions:

 <wsdl:portType name="CalcServiceSoap">
 <wsdl:operation name="Add">
 <wsdl:input message="tns:AddRequest" />
 <wsdl:output message="tns:AddResponse" />
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="CalcServiceSoap" type="tns:CalcServiceSoap">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="Add">
 <soap:operation soapAction="http://Calc.com/Calc/Add" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

C++ Code Generated for XSD Types
For C++, a class definition is generated for each XSD type. This class is derived from either the OSRTBaseTyperun-time
class or from a descendent of this class. The class may contain a constructor for initialization of member variables
and a destructor to free dynamic memory held by the class. Method declarations will also be generated instead of C
function prototypes for encoding, decoding, printing, and generation of test data. For some types, additional helper
methods may also be declared (for example, enumerated type definitions contain a toStringmethod declaration).

Generated C/C++ Source Code

22

A sample section from a C++ header file corresponding to the XSD Name type defined above is as follows:

 /**
 * Name
 */
 class EXTERN Name : public OSXSDComplexType {
 public:
 OSXMLStringClass givenName;
 OSXMLStringClass initial;
 OSXMLStringClass familyName;

 Name ();
 Name (const Name&);

 virtual int encodeXML (OSRTMessageBufferIF& msgbuf,
 const OSUTF8CHAR* elemName, const OSUTF8CHAR* nsPrefix);

 virtual int decodeXML (OSCTXT* pctxt);

 static int validateXML (OSCTXT* pctxt);

 virtual void print (const char* name);

 OSRTBaseType* clone () const {
 return new Name (*this);
 }
 Name& operator= (const Name&);
 } ;

If you compare this to what was generated for C above, you will notice that all of the items are now encapsulated within
a class definition. This includes the element declarations as well as the functions which are now methods in the class.

C++ Code Generated for XSD Global Elements
Special classes called control classesare generated for global elements that are not referenced by any other type de-
finitions. These are global elements that are not used in any other type definitions via the refattribute (for example,
<complexType name="SomeType" ref="SomeGlobalElement"/>).

The purpose of a control class is to act as a control interface for encoding or decoding complete XML documents or
messages. This class allows a message buffer or stream object to be associated with an XSD type class. Once this
association is made, methods can be invoked from within the class to serialize data to and from the type class and
the buffer or stream.

A sample global element section is as follows:

 /**/
 /* */
 /* personnelRecord */
 /* */
 /**/
 class EXTERN personnelRecord_CC : public OSXSDGlobalElement {
 protected:

Generated C/C++ Source Code

23

 PersonnelRecord* mpValue;
 personnelRecord_CC& operator= (const personnelRecord_CC&);

 public:
 personnelRecord_CC (PersonnelRecord* pvalue=0);
 personnelRecord_CC (PersonnelRecord& value);
 personnelRecord_CC
 (OSRTMessageBufferIF& msgbuf, PersonnelRecord* pvalue=0);
 personnelRecord_CC (OSRTMessageBufferIF& msgbuf,
PersonnelRecord& value);
 ~personnelRecord_CC();

 // standard encode/decode methods (defined in base class):
 // int encode ();
 // int decode ();

 // stream encode/decode methods:
 int encodeTo (OSRTMessageBufferIF& msgbuf);
 int decodeFrom (OSRTMessageBufferIF& msgbuf);

 // stream validate method:
 int validateFrom (OSRTMessageBufferIF& msgbuf);

 inline PersonnelRecord* getValue() { return mpValue; }
 inline void setValue (PersonnelRecord* pvalue) { mpValue = pvalue; }

 void print (const char* name);
 } ;

C++ Code Generated for Project-level Factory
Decode/Validation Function
If -genFactoryoption is specified and C++ code generation is selected, a Factory class definition is generated. The
class contains a constructor for initialization of member variables. Method declarations will also be generated instead
of C function prototypes for decoding, validating and printing.

A sample section from sample CSTA C++ header file is as follows:

 class EXTERN CSTA_Factory {
protected:
 /**
 * The mpContext member variable holds a reference-counted C runtime
 * variable. This context is used in calls to all C run-time functions.
The
 * context pointed at by this smart-pointer object is shared with the
 * message buffer object contained within this class.
 */
 OSRTCtxtPtr mpContext;

 /**
 * The mpMsgBuf member variable is a pointer to a derived message buffer
or

Generated C/C++ Source Code

24

 * stream class that will manage the message being decoded.
 */
 OSRTMessageBufferIF* mpMsgBuf;

public:
 CSTA_Factory () : mpContext (new OSRTContext()), mpMsgBuf (0) {}
 CSTA_Factory (OSRTMessageBufferIF& msgbuf) : mpMsgBuf(&msgbuf) {
 mpContext = msgbuf.getContext();
 }
 ~CSTA_Factory () {}

 /**
 * The getCtxtPtr method returns the underlying C runtime context. This
 * context can be used in calls to C runtime functions.
 */
 inline OSCTXT* getCtxtPtr () {
 return (!mpContext.isNull ()) ? mpContext->getPtr() : 0;
 }

 // element tags
 enum {
 T_cause = 1,
 T_consultOptions = 2,
 T_servicesPermitted = 3,
 ...
 } ;
 #define Num_Global_Elem_CSTA_Project 19

 OSUINT16 t;
 union {
 /* t = 1 */
 cause_CC *cause;
 /* t = 2 */
 consultOptions_CC *consultOptions;
 /* t = 3 */
 servicesPermitted_CC *servicesPermitted;
 ...
 } u;

 /**
 * Decode factory function. This function
 * decodes complete XML document when the message type
 * is unknown.
 */
 int decode ();

 /**
 * Validate factory function. This function
 * validates complete XML document when the message type
 * is unknown.
 */
 int validate ();

 void print (const char* name);

Generated C/C++ Source Code

25

 /**
 * This method tests to see if the cause
 * element is selected.
 * @return TRUE if selected; FALSE otherwise.
 */
 inline OSBOOL is_cause () {
 return (t == T_cause);
 }

 /**
 * This method tests to see if the consultOptions
 * element is selected.
 * @return TRUE if selected; FALSE otherwise.
 */
 inline OSBOOL is_consultOptions () {
 return (t == T_consultOptions);
 }

 /**
 * This method tests to see if the servicesPermitted
 * element is selected.
 * @return TRUE if selected; FALSE otherwise.
 */
 inline OSBOOL is_servicesPermitted () {
 return (t == T_servicesPermitted);
 }
 ...
} ;

C++ Code Generated for WSDL Operation In-
put/Output/Fault Types
For C++, a class definition is generated for each WSDL Operation onput/output/fault type defined in binding. This
class is derived from the OSXSDComplexTyperun-time class. The class may contain a constructor for initialization
of member variables and a destructor to free dynamic memory held by the class. Method declarations will also be
generated instead of C function prototypes for encoding, decoding, printing, and generation of test data.

A sample section from sample CalcWSDL C++ header file is as follows:

 /**/
 /* */
 /* OSXMLSoapFault */
 /* */
 /**/

 class EXTERN OSXMLSoapFault : public OSXSDComplexType {
 public:
 struct {
 unsigned faultactorPresent : 1;
 } m;
 OSXMLStringClass faultcode;

Generated C/C++ Source Code

26

 OSXMLStringClass faultstring;
 OSXMLStringClass faultactor;

 OSXMLSoapFault ();
 OSXMLSoapFault (const OSXMLSoapFault&);
 virtual ~OSXMLSoapFault () {}

 virtual int encodeXML (OSRTMessageBufferIF& msgbuf,
 const OSUTF8CHAR* elemName, OSXMLNamespace* pNS);

 virtual int decodeXML (OSCTXT* pctxt);
 ...
 } ;

 /**
 * WSDL operation definitions
 */
 /**/
 /* */
 /* Add */
 /* */
 /**/
 class EXTERN Add_Fault : public OSXSDComplexType {
 public:
 struct {
 unsigned detailPresent : 1;
 } m;
 ::OSXMLSoapFault fault;
 OSXSDAnyTypeClass detail;

 Add_Fault ();
 Add_Fault (const Add_Fault&);
 virtual ~Add_Fault () {}

 virtual int encodeXML (OSRTMessageBufferIF& msgbuf,
 const OSUTF8CHAR* elemName, OSXMLNamespace* pNS);

 virtual int decodeXML (OSCTXT* pctxt);

 virtual void print (const char* name);
 ...
 } ;

 class EXTERN Add_Input : public OSXSDComplexType {
 public:
 ::Operands_ELEM Operands;

 Add_Input ();
 Add_Input (const Add_Input&);
 virtual ~Add_Input () {}

 virtual int encodeXML (OSRTMessageBufferIF& msgbuf,
 const OSUTF8CHAR* elemName, OSXMLNamespace* pNS);

Generated C/C++ Source Code

27

 virtual int decodeXML (OSCTXT* pctxt);

 static int validateXML (OSCTXT* pctxt);

 virtual void print (const char* name);

 OSRTBaseType* clone () const {
 return new Add_Input (*this);
 }

 Add_Input& operator= (const Add_Input&);
 private:
 void defaultInit ();
 void doCommonCopy (const Add_Input& orig);
 void doCommonRelease ();

 } ;

 class EXTERN Add_Output : public OSXSDComplexType {
 public:
 OSREAL Result;

 Add_Output ();
 Add_Output (const Add_Output&);
 virtual ~Add_Output () {}

 virtual int encodeXML (OSRTMessageBufferIF& msgbuf,
 const OSUTF8CHAR* elemName, OSXMLNamespace* pNS);

 virtual int decodeXML (OSCTXT* pctxt);

 static int validateXML (OSCTXT* pctxt);

 virtual void print (const char* name);
 ...
 } ;

C++ Code Generated for WSDL Operation In-
put/Output/Fault
Control classes are generated for WSDL Operation input/output/fault bindings. The purpose of a control class is to act
as a control interface for encoding or decoding complete XML documents or messages. This class allows a message
buffer or stream object to be associated with a WSDL Operation input/ output/fault type class. Once this association is
made, methods can be invoked from within the class to serialize data to and from the type class and the buffer or stream.

A sample WSDL Operation Input/Output section is as follows:

 class EXTERN Add_Fault_CC : public OSXSDGlobalElement {
 protected:
 Add_Fault* mpValue;
 Add_Fault_CC& operator= (const Add_Fault_CC&);

Generated C/C++ Source Code

28

 public:
 Add_Fault_CC (Add_Fault* pvalue=0);
 Add_Fault_CC (Add_Fault& value);
 Add_Fault_CC (OSRTMessageBufferIF& msgbuf, Add_Fault* pvalue=0);
 Add_Fault_CC (OSRTMessageBufferIF& msgbuf, Add_Fault& value);
 ~Add_Fault_CC();

 // standard encode/decode methods (defined in base class):
 // int encode ();
 // int decode ();

 // stream encode/decode methods:
 int encodeTo (OSRTMessageBufferIF& msgbuf);

 inline Add_Fault* getValue() { return mpValue; }
 inline void setValue (Add_Fault* pvalue) { mpValue = pvalue; }

 void genTestInstance();
 void print (const char* name);
 } ;

 class EXTERN Add_Input_CC : public OSXSDGlobalElement {
 protected:
 Add_Input* mpValue;
 Add_Input_CC& operator= (const Add_Input_CC&);

 public:
 Add_Input_CC (Add_Input* pvalue=0);
 Add_Input_CC (Add_Input& value);
 Add_Input_CC (OSRTMessageBufferIF& msgbuf, Add_Input* pvalue=0);
 Add_Input_CC (OSRTMessageBufferIF& msgbuf, Add_Input& value);
 ~Add_Input_CC();

 // standard encode/decode methods (defined in base class):
 // int encode ();
 // int decode ();

 // stream encode/decode methods:
 int encodeTo (OSRTMessageBufferIF& msgbuf);
 int decodeFrom (OSRTMessageBufferIF& msgbuf);

 inline Add_Input* getValue() { return mpValue; }
 inline void setValue (Add_Input* pvalue) { mpValue = pvalue; }

 void genTestInstance();
 void print (const char* name);
 } ;

 class EXTERN Add_Output_CC : public OSXSDGlobalElement {
 protected:
 Add_Output* mpValue;
 Add_Fault* mpFault;
 Add_Output_CC& operator= (const Add_Output_CC&);
 public:

Generated C/C++ Source Code

29

 Add_Output_CC (Add_Output* pvalue=0, Add_Fault* pfault=0);
 Add_Output_CC (Add_Output& value);
 Add_Output_CC (Add_Output& value, Add_Fault& fault);
 Add_Output_CC (OSRTMessageBufferIF& msgbuf, Add_Output* pvalue=0,
 Add_Fault* pfault=0);
 Add_Output_CC (OSRTMessageBufferIF& msgbuf, Add_Output&
value);
 Add_Output_CC (OSRTMessageBufferIF& msgbuf, Add_Output&
value,
 Add_Fault& fault);
 ~Add_Output_CC();

 // standard encode/decode methods (defined in base class):
 // int encode ();
 // int decode ();

 // stream encode/decode methods:
 int encodeTo (OSRTMessageBufferIF& msgbuf);
 int decodeFrom (OSRTMessageBufferIF& msgbuf);

 // stream validate method:
 int validateFrom (OSRTMessageBufferIF& msgbuf);

 inline Add_Output* getValue() { return mpValue; }
 inline void setValue (Add_Output* pvalue) { mpValue = pvalue; }

 void genTestInstance();
 void print (const char* name);
 } ;

Namespace Considerations
In XML and XML Schema, namespaces are frequently used to ensure the uniqueness of entity names across schema
boundaries. By default, XBinder does not use the namespace information when generating names for types, elements,
and attributes in the C or C++ code. This is done to provide shorter and more concise names, but it sometimes leads
to collisions and ambiguous names in the code.

There are a number of methods that can be used to remove this ambiguity. These are described below.

Use of the -useNSPfx Command Line Switch

Specifying -useNSPfxon the command line when compiling a set of XSD specifications will cause namespace prefixes
specified in the schema to be added to the generated C or C++ names. This will ensure that no naming collisions will
occur (this is only true, of course, if the XSD specifications being compiled are valid in their use of namespaces).
However, the generated C or C++ names will be longer as they will be of the form <prefix>_<localName>where
prefixis the defined namespace prefix and localNameis the local name for the item.

One thing to be aware of when using -useNSPfxis that prefixes for a given namespace URI can change across schemas.
For this reason, it is recommended that all schemas that make up a project be compiled at once to ensure that the same
prefix is used for a given name. This can be done by either including all of the schema filenames to be compiled on
the command line at once, or by using the -all switch to instruct the compiler to compile all included and/or imported
schemas. The prefix that is used for a given name is the first one encountered during the compilation process. If you
know that namespace prefix names are maintained in a consistent manner across schemas (i.e. the same prefix is always
used to describe a given URI), then it is OK to compile the schemas individually with this option.

Generated C/C++ Source Code

30

Use of the -typeCasing and -elemCasing Command Line SwitchesGlobal element and type names may be the same
in a given schema. While this may be a questionable programming practice from a logical point of view, it is legal and
it will cause problems in XBinder generated code because the generated names will clash. This can even be the case
within the same namespace; therefore, use of the -useNSPfxoption cannot be used to solve this problem.

The -typeCasingand/or -elemCasingoptions provide a quick and easy way to fix these names in all compiled schemas.
By setting one or the other (or both) to different case values (upper or lower), you can ensure that no name collisions
of this sort will occur. The typical convention when using these switches is to set element name case to lower and
type name case to upper.

Use of the <prefix> Configuration File SettingMore specific control of naming problems can be achieved by using
the <prefix> configuration file setting. This allows individual entities within a schema specification to be targeted for
name alteration. It is a good alternative when you only have a few name clashes and do not want to add the verbosity
to all names introduced by the -useNSPfxswitch.

See the section on configuration file use for specifics on how to use a configuration file to customize the compilation
process. Using <prefix> in a configuration file causes the specified prefix name to be prepended to the generated C or
C++ name. This will make the name of the targeted item different in the generated code from another entity having
the same name.

31

Chapter 4. XSD Simple Type to C/C++ Type
Mappings
XSD built-in simple type declarations are mapped directly to C types defined in the osSysTypes.h runtime header file.
The general mapping of each XSD simple type to a C type is as follows:

XSD Built-In Type C Type (in osSysTypes) C Type (base)

anyURI OSXMLSTRING unsigned char*

anyType OSXSDAnyType struct

base64Binary OSDynOctStr struct

boolean OSBOOL unsigned char*

byte OSINT8 char

date OSXMLSTRING unsigned char*

dateTime OSXMLSTRING unsigned char*

decimal OSREAL double

double OSREAL double

duration OSXMLSTRING unsigned char*

ENTITIES OSRTDList linked list struct

ENTITY OSXMLSTRING unsigned char*

float OSREAL double

gDay OSXMLSTRING unsigned char*

gMonth OSXMLSTRING unsigned char*

gMonthDay OSXMLSTRING unsigned char*

gYear OSXMLSTRING unsigned char*

gYearMonth OSXMLSTRING unsigned char*

hexBinary OSDynOctStr struct

ID OSXMLSTRING unsigned char*

IDREF OSXMLSTRING unsigned char*

IDREFS OSRTDList linked list struct

integer OSINT32 int

int OSINT32 int

language OSXMLSTRING unsigned char*

long OSINT64 long long (64-bit integer type)

Name OSXMLSTRING unsigned char*

NCName OSXMLSTRING unsigned char*

negativeInteger OSINT32 int

NMTOKEN OSXMLSTRING unsigned char*

NMTOKENS OSRTDList linked list struct

nonNegativeInteger OSUINT32 unsigned int

nonPositiveInteger OSUINT32 int

XSD Simple Type to C/C++ Type Mappings

32

XSD Built-In Type C Type (in osSysTypes) C Type (base)

normalizedString OSXMLSTRING unsigned char*

positiveInteger OSUINT32 unsigned int

short OSUINT16 short

string OSXMLSTRING unsigned char*

time OSXMLSTRING unsigned char*

token OSXMLSTRING unsigned char*

unsignedByte OSUINT8 unsigned char*

unsignedShort OSUINT16 unsigned short

unsignedInt OSUINT32 unsigned int

unsignedLong OSUINT64 unsigned long (64-bit)

For C++, class wrappers are added around each of these types when they are used in simple type declarations. In most
cases, these classes contain a single public member variable called value that holds the value of the type. They also
contain a constructor and assignment operator for setting the value.

The following sections provide more detail on these mappings.

Character String Types
XSD defines many kinds of character string types including string, normalizedString, and token.
All of these XSD types are mapped to an OSXMLSTRING type by default. This internal type represents a UTF-8
character string. The definition of this type in osSysTypes.h is as follows:

 typedef struct OSXMLSTRING {
 OSBOOL cdata;
 const OSUTF8CHAR* value;
 } OSXMLSTRING;

The cdata member of this structure is a flag indicating whether or not the value is to be encoded as an XML CDATA
section. The value member is a pointer to the string to be encoded. The underlying C type for the OSUTF8CHAR type
is unsigned char. This allows the entire UTF-8 character range to be represented as positive numbers.

If the -static command line parameter is specified, character string types with a maxLength or fixed length facet set
will be represented as static arrays of OSUTF8CHAR. In this case, CDATA is not supported. For example,

 typedef OSUTF8CHAR string8_t[(8 * OSUTF8CHAR_SIZE) + 1];

where 8 is the maxLength or fixed length value. Macro OSUTF8CHAR_SIZE is defined to be 1 by default in
osMacros.h. If the character size in the string is more than 1, this macro must be defined to the largest character size
in byte.

For C++, an XML string class is used:

 class EXTRTCLASS OSXMLStringClass : public OSRTBaseType {
 protected:
 OSUTF8CHAR* value;

XSD Simple Type to C/C++ Type Mappings

33

 OSBOOL cdata;
 ...

 public:
 /**
 * The default constructor creates an empty string.
 */
 OSXMLStringClass();
 ...
 } ;

This class contains constructors and other methods to allow the member variables to be initialized and manipulated.

If -usestl is used with C++ code generation, the XML STL string class is used instead of XML string class:

 class EXTRTCLASS OSXMLSTLStringClass : public OSRTBaseType {
 protected:
 std::string* value;
 OSBOOL cdata;
 ...

 public:
 /**
 * The default constructor creates an empty string.
 */
 OSXMLSTLStringClass();
 ...
 } ;

If -use-qt is used with C++ code generation, QString is used instead of OSXMLStringClass.

The data member value in calss OSXMLSTLStringClass is an STL string (the string class from C++ standard template
library). To enable using the XML STL string class, HAS_STL needs to be defined.

The general mapping is as follows:

XSD type:

 <xsd:simpleType name="TypeName">
 <restriction base="xsd:string"/>
 </xsd:simpleType>

Generated C code:

 typedef OSXMLSTRING TypeName;

Generated C++ code:

 class TypeName : public OSXMLStringClass {
 ...
 } ;

XSD Simple Type to C/C++ Type Mappings

34

or, when -usestl is used:

 class TypeName : public OSXMLSTLStringClass {
 ...
 } ;

or, when -use-qt is used:

 class TypeName : public QString {
 ...
 } ;

In this case, xsd:string refers to the XSD string base type and all other types that are derived from it. For C, a
variable of this type can be populated with a simple string literal cast to a const OSUTF8CHAR* variable as follows:

 TypeName strval;
 strval.cdata = FALSE;
 strval.value = (const OSUTF8CHAR*) "my string";

In the case of C++, the built-in assignment operator can be used to set the string value:

 strval = "my string";

This will set the cdata member to false as above and do a deep-copy of the text into the object.

Note that directly setting the value and cdata members is no longer supported. Use the setValue and setCDATA meth-
ods, instead. Code that set these data members directly will not compile against the updated library, even if -compat
is specified.

String-based types may be further restricted through the use of facets such as l ength, minLength, maxLength, and
pattern. These have no effect on the generated C or C++ type definitions. Constraint checks are added to the generated
encoders and decoders to ensure values of the type are within the specified constraint bounds.

Enumerated Type
Note

Prior to XBinder 2.2.2, the value for an enumerated type was represented using OSUINT16. From version
2.2.2 onward, the generated enum type is now used. Either -compat 221 or else -noenumvars will restore the
old behavior. Depending on the C/C++ compiler, and the options used with it, one or the other approach may
be more space efficient.

Another facet that is frequently applied to XSD string-based types is enumeration. This results in the generation of a
C enum typedef that enumerates all of the identifiers that can be used in the type.

The general mapping is as follows:

XSD type:

XSD Simple Type to C/C++ Type Mappings

35

 <xsd:simpleType name="TypeName">
 <restriction base="xsd:string">
 <xsd:enumeration value="enum1"/>
 <xsd:enumeration value="enum2"/>
 ...
 <xsd:enumeration value="enumN"/>
 </xsd:restriction>
 </xsd:simpleType>

Table 4.1. Generated C code

normal with -noenumvars

 //Fields will be declared as TypeName (an enum type)
 //TypeName_ENUM is declared to help with upgrading from
 //v2.2.1 or earlier.
 typedef enum {
 TypeName_enum1 = 0,
 TypeName_enum2 = 1,
 ...
 TypeName_enumN = N - 1,
 } TypeName;

 typedef TypeName TypeName_ENUM; //deprecated

 //Fields will be declared as TypeName (OSUTIN16).
 //TypeName_ENUM exists only to define useful names.
 typedef enum {
 TypeName_enum1 = 0,
 TypeName_enum2 = 1,
 ...
 TypeName_enumN = N - 1,
 } TypeName_ENUM;

 typedef OSUINT16 TypeName;

Table 4.2. Generated C++ code

normal with -noenumvars

 //The enum type is used for the value
 class TypeName : public OSRTBaseType {
 public:
 enum Enum {
 enum1 = 0,
 enum2 = 1,
 ...
 enumN = N - 1,
 } ;

 Enum value;
 ...
 } ;

 //The enum type just defines useful names.
 class TypeName : public OSRTBaseType {
 public:
 enum Enum {
 enum1 = 0,
 enum2 = 1,
 ...
 enumN = N - 1,
 } ;

 OSUINT16 value;
 ...
 } ;

Note that for C, TypeName is used on the enumerated identifiers as a namespace mechanism in order to prevent name
clashes if two or more enumerated types use the same identifier names. In this case, the type name may only be a partial
fragment of the full name to keep the names shorter. This is not a problem in C++ as the class provides a namespace
for the enumeration constants defined within (for example, enum1 would be referenced as TypeName::enum1 outside
the class).

In XSD, the rules for naming enumerated identifiers are more liberal than in the C/C++ programming language. For
example, enumerated identifiers can start with numbers or punctuation marks. The logic to transform the XSD enu-
meration names to C/C++ form makes use of the following rules to ensure the names are valid C/C++ names:

1. If all items are numeric, no symbolic identifiers are generated. The user is expected to work with the items in
numeric form.

XSD Simple Type to C/C++ Type Mappings

36

2. If an enumeration identifier consists of whitespace (for example, enumeration value=" "), the special name BLANK
is used.

3. Other special names are used for other single punctuation mark identifiers (for example, '+' = PLUS).

4. If after applying these rules, the name still has a non-alphabetic start character, the character 'x' is prepended.

5. All invalid C/C++ identifier characters are replaced with underscores (_) within the name.

Integer Types
XSD defines several integer types including integer, byte, unsignedByte, positiveInteger, etc..
Each of these types is mapped to a C type depending on the following factors:

• The name of the type (for example, unsignedByte is mapped to a different type - OSUINT8 - than integer - OSINT32,

• Value range facets (minInclusive, maxInclusive, minExclusive, maxExclusive) that are applied to the type.

By default, an xsd:integer with no constraints results in the generation of an "OSINT32" type which is a standard
C signed 32-bit integer type. The general mapping is as follows:

XSD type:

 <xsd:simpleType name="TypeName">
 <restriction base="xsd:integer"/>
 </xsd:simpleType>

Generated C code:

 typedef OSINT32 TypeName;

Generated C++ code:

 class TypeName : public OSRTBaseType {
 OSINT32 value;
 ...
 } ;

Value range facets will alter the C type used to represent a given integer value. The smallest integer type that can hold
the constrained value will always be used. For example, the following declaration declares an integer to hold a value
between 2 and 10 (inclusive):

 <xsd:simpleType name="Int_2_to_10">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="2"/>
 <xsd:maxInclusive value="10"/>
 </xsd:restriction>
 </xsd:simpleType>

In this case, a byte type (unsigned char) could be used to hold the value because it must be between 2 and 10 (a signed
byte could also be used but an unsigned value is always used whenever negative numbers are not required). Other
value ranges would cause different integer types to be used that provide the most efficient amount of storage.

XSD Simple Type to C/C++ Type Mappings

37

The <typemap> declarations can be used to map an integer number type to a string type. This can be done at global
or schema level. This mapping configuration can be used to preserve the format of integer numbers after decoding
and reencoding.

For example, to map xsd:short types to string:

 typemap>
 <xsdtype>integer</xsdtype>
 <ctype>string</ctype>
 </typemap>

The following table shows the types that would be used for the different range values:

Min Lower Bound1 Max Upper Bound C Type (rtx) C Type (base)

-128 127 OSINT8 char (signed 8-bit int)

0 255 OSUINT8 unsigned char (unsigned 8-
bit number)

-32768 32767 OSINT16 short (signed 16-bit int)

0 65535 OSUINT16 unsigned short (unsigned
16-bit int)

-2147483648 2147483647 2147483647 OSINT32 int (signed 32-bit
integer)

0 4294967295 OSUINT32 unsigned int (unsigned 32-
bit integer)

Real Number Types
XSD defines the following types that are mapped to the C double type:

•
float

•
double

•
decimal

A double is always used because it provides the maximum precision to hold numbers for all of the types above.

The general mapping is as follows:

XSD type:

 <xsd:simpleType name="TypeName">
 <restriction base="xsd:float"/>
 </xsd:simpleType>

Generated C code:

XSD Simple Type to C/C++ Type Mappings

38

 typedef OSREAL TypeName;

Generated C++ code:

 class TypeName : public OSRTBaseType {
 OSREAL value;
 ...
 } ;

The character representation of these numeric types in generated messages can be altered by using a configuration file.
This allows behavior such as preservation of leading zeros to be specified.

The <typemap> declarations can be used to map a real number type or a list of real number types separated by space
to a string type. This can be done at global or schema level. This mapping configuration can be used to preserve the
format of floating point numbers after decoding and reencoding.

For example, to map xsd:double types to string:

 <typemap>
 <xsdtype>double</xsdtype>
 <ctype>string</ctype>
 </typemap>

For more information, see the XML Numeric Values Format Specification section.

Binary String Types
XSD defines the following types that are mapped to a C binary type structure:

• hexBinary

• base64Binary

The type of structure used depends on whether or not a length facet is applied to the type. If a length facet is not used,
or the length is a very large value (> 32K), a built-in type containing a pointer to a dynamic memory buffer is used to
hold the binary data. If -x64 was specified, OSDynOctStr64 is used. Otherwise, OSDynOctStr is used. The definition
of these types in osSysTypes.h is as follows:

 typedef struct OSDynOctStr {
 OSUINT32 numocts;
 const OSOCTET* data;
 } OSDynOctStr;

 typedef struct OSDynOctStr64 {
 OSSIZE numocts;
 OSOCTET* data;
 } OSDynOctStr64;

The numocts member holds the length of the binary string and the data member holds the actual data.

For C++, a built-in class definition is used that extends this structure:

XSD Simple Type to C/C++ Type Mappings

39

 class OSDynOctStrClass : public OSRTBaseType {
 protected:
 OSSIZE numocts;
 const OSOCTET* data;
 public:
 ...
 } ;

This class provides methods for getting and setting the data values as well as initialization through constructors and
other utility methods.

If a length facet is used that restricts the size of the binary string to a value less than 32K, a custom type is generated
that contains a static array to hold the data. The general form of this type is as follows:

 typedef struct TypeName {
 OSUINT32 numocts;
 OSOCTET data[length];
 } TypeName;

If -x64 was used, numocts will be of type OSSIZE.

In this case, TypeName would be the name of the type defined in the XSD specification and length would be the value
of the length facet.

In the case of C++, a class is generated:

 class TypeName : public OSRTBaseType {
 OSUINT32 numocts;
 OSOCTET data[length];
 ...
 } ;

If -x64 was used, numocts will be of type OSSIZE.

The general mappings for each case are as follows:

Dynamic Case (no length facet):
XSD type:

 <xsd:simpleType name="TypeName">
 <restriction base="xsd:hexBinary"/>
 </xsd:simpleType>

Generated C code:

 typedef OSDynOctStr TypeName; /* if -x64 is not used */
 typedef OSDynOctStr64 TypeName; /* if -x64 is used */

XSD Simple Type to C/C++ Type Mappings

40

Generated C++ code:

class TypeName : public OSDynOctStrClass { ... } ;

Static Case (length restricted to 32K or less):
XSD type:

 <xsd:simpleType name="TypeName">
 <xsd:restriction base="xsd:hexBinary">
 <xsd:length value="length"/>
 </xsd:restriction>
 </xsd:simpleType>

Generated C code:

 typedef struct TypeName {
 OSUINT32 numocts; /* if -x64 is not used */
 OSSIZE numocts; /* if -x64 is used */
 OSOCTET data[length];
 } TypeName;

Generated C++ code:

 class TypeName : public OSRTBaseType {
 OSUINT32 numocts; /* if -x64 is not used */
 OSSIZE numocts; /* if -x64 is used */
 OSOCTET data[length];
 ...
 } ;

Note: in the static case, the maxLength facet will cause the same code to be generated with maxLength used for the
size of the array.

Date/Time Types
By default, the xsd:dateTime, xsd:date, and xsd:time types are mapped to character string variables.
However, if the -numDateTime command line option is selected, or a <ctype>numeric</ ctype> configuration item
is associated with a date/time type, then a reference to the following numeric structure is used:

 typedef struct OSXSDDateTime {
 OSINT32 year;
 OSUINT8 mon; /* 1 <= mon <= 12 */
 OSUINT8 day; /* 1 <= day <= 31 */
 OSUINT8 hour; /* 0 <= hour <= 23 */
 OSUINT8 min; /* 0 <= min <= 59*/
 OSREAL sec;
 OSBOOL tz_flag; /* is tzo explicitely set? */
 OSINT32 tzo; /* -1440 <= tzo <= 1440 */
 } OSXSDDateTime;

XSD Simple Type to C/C++ Type Mappings

41

For C++, a class is derived from this type (OSXSDDateTimeClass) which provide constructors and helper methods to
manipulate date/time values. For example, conversions to and from system time types such as time_t and struct tm are
supported. See the XBinder C/C++ Run-time Reference Manual for more details.

The general mapping is as follows:

XSD type:

 <xsd:simpleType name="TypeName">
 <xsd:restriction base="xsd:dateTime"/>
 </xsd:simpleType>

Generated C code:

 typedef OSXSDDateTime TypeName;

Generated C++ code:

 class TypeName : public OSXSDDateTimeClass {
 ...
 } ;

Boolean Type
The xsd:boolean type is mapped to a C unsigned char that is allowed to have the value zero for FALSE and any
other value for TRUE. The general mapping is as follows:

XSD type:

 <xsd:simpleType name="TypeName">
 <xsd:restriction base="xsd:boolean"/>
 </xsd:simpleType>

Generated C code:

 typedef OSBOOL TypeName;

Generated C++ code:

 class TypeName : public OSRTBaseType {
 OSBOOL value;
 ...
 } ;

Union Type
An xsd:union type is used to specify that one of several simple types can be used for a specific value. This type is
mapped to a C structured type that contains an identifier for the selected type and a union of all of the possible types.

XSD Simple Type to C/C++ Type Mappings

42

Atomic types (i.e. those that use a single processor storage unit such as integer or Boolean) are stored as values in
the union whereas compound or structured types (such as the structure used to represent a hexBinary type) are stored
as pointers.

The general mapping is as follows:

XSD type:

 <xsd:simpleType name="TypeName">
 <xsd:union memberTypes="Type1 … TypeN"/>
 </xsd:simpleType>

Generated C code:

 /* choice tag constants */
 #define T_TypeName_type1 1
 ...
 #define T_TypeName_typeN N

 typedef struct TypeName {
 OSUINT16 t;
 union {
 /* t = 1 */
 Type1 type1;
 ...
 /* t = N */
 TypeN typeN;
 } u;
 } TypeName;

Generated C++ code:

 class TypeName : public OSRTBaseType {
 public:
 // tag constants
 enum {
 T_type1 = 1,
 ...
 T_typeN = N,
 } ;
 OSUINT16 t;
 union {
 /* t = 1 */
 Type1 type1;
 ...
 /* t = N */
 TypeN typeN;
 } u;
 ...
 } ;

Notes:

XSD Simple Type to C/C++ Type Mappings

43

1. Where typename begins with a lowercase letter above (for example, Type1 is shown as type1 in places), it means
the actual typename is used with the first letter set to lowercase.

2. The choice tag constants (T_TypeName_type) are the identifiers of each of the particular values in the union. The
selected value is stored in the t member variable of the generated structure. In the case of C++, the tag values are
in the form of an enum construct within the class containing enumerations of the form T_type.

3. The member variables in the union may be stored as values (if atomic) or as pointers to a value of the item (if
structured).

4. The generated C++ class contains additional methods to get, set, or query the union value. These are in the form
of get_type, set_type, and is_type respectively.

List Type
An xsd:list type is used to model a space-separated list of values of a given type. This type is mapped to a linked-
list type if its length is unbounded, or an array type if its length is bounded. The built-in OSRTDList type (run-time
doubly linked list) is the type used for repeating sequences such as this. This list type can be used with the rtxDList
run-time functions for building and manipulating lists. See the Doubly-Linked List Utility Functions section for more
details.

In the case of C++, the built-in OSRTDListClass or OSRTObjListClass type is used. These classes extend the C OSRT-
DList structure and add constructors and methods for adding, finding, and removing items from the list. The generated
C++ code contains overloaded versions of these methods that correspond to the specific type of the element within
the list.

If -use-qt is used with C++, Qt collection classes are used instead of the linked-list classes OSRTDListClass and
OSRTObjListClass. For an xsd:list with an item type of xsd:string, QStringList is used.

The general C and C++ mapping for an XSD list type is as follows:

Unbounded Case
XSD type:

 <xsd:simpleType name="TypeName">
 <xsd:list itemType="Type"/>
 </xsd:simpleType>

Generated C code:

 typedef OSRTDList TypeName;

Generated C++ code:

 class TypeName : public OSRTDListClass {
 ...
 } ;

OR, when -use-qt is used:

XSD Simple Type to C/C++ Type Mappings

44

 class TypeName : public QLinkedList < Type > {
 ...
 } ;

Bounded Case
XSD type:

 <xs:simpleType name="TypeName">
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType="type"/>
 </xs:simpleType>
 <xs:length value="length"/>
 </xs:restriction>
 </xs:simpleType>

Generated C code:

 typedef struct TypeName {
 OSUINT32 n; /* if -x64 is not used */
 OSSIZE n; /* if -x64 is used */
 TYPE elem[length];
 } typeName;

Generated C++ code:

 class TypeName : public OSRTBaseType {
 OSUINT32 n; /* if -x64 is not used */
 OSSIZE n; /* if -x64 is used */
 TYPE elem[length];
 ...
 } ;

The one exception to this mapping occurs when the referenced item type is an enumeration. In this case, a structure
is generated with each enumerated item represented as a single bit. This is a more compact structure that is easier to
work with for specifying enumerated items and for validation to make sure there are no duplicates in the list. The
mapping for this special case is as follows:

XSD type:

 <xsd:simpleType name="EnumType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="enum1"/>
 <xsd:enumeration value="enum2"/>
 ...
 <xsd:enumeration value="enumN"/>
 </xsd:restriction>
 </xsd:simpleType>

XSD Simple Type to C/C++ Type Mappings

45

 <xsd:simpleType name="TypeName">
 <xsd:list itemType="EnumType"/>
 </xsd:simpleType>

Generated C code:

 typedef struct TypeName {
 unsigned enum1Bit : 1;
 unsigned enum2Bit : 1;
 ...
 unsigned enumNBit : 1;
 OSRTDList* _extItems;
 } TypeName;

Generated C++ code:

 class TypeName : public OSRTBaseType {
 public:
 unsigned enum1Bit : 1;
 unsigned enum2Bit : 1;
 ...
 unsigned enumNBit : 1;
 OSRTDListClass* _extItems;

 ...
 } ;

Each of the bit fields in this type represents a declared enumeration item in the XSD definition. The _extItems field
is added for extensibility purposes (i.e. if an unknown item is received it is added to this list). This construct will be
used if a declared enumerated type is referenced (as is the case above) or if the list type contains an anonymous type
with an enumeration list.

46

Chapter 5. XSD Complex Type to C/C++
Type Mappings
XSD complex type declarations are mapped to one or more C structured types or C++ classes. The actual mappings
are influenced by several factors including the level of nesting of complex type structures within other complex types,
facets that are applied to complex type groups and elements, and attributes that are added to the types.

The equivalent C type and C++ class definitions for each of the various XSD complex types follow.

Note that in when the mixed="true" attribute is set for a complex type, its contents will be stored as text in a string
variable named _content. This allows text to appear between elements. To generate a structure with data members that
match the complex type’s content model, use the -nomixed command line option to disable support for mixed content.

SEQUENCE
The XSD SEQUENCE type <xsd:sequence> is a complex type consisting of a series of element definitions. These
elements can reference other XSD types including other complex types. The elements must appear in the order they
are declared in XML instances of this type.

In its simplest form, an XSD sequence consists of a series of element definitions that reference other types. The
equivalent C type and C++ class mapping for this is a structure that contains the equivalent type mapping for each
of the elements as follows:

XSD type:

 <xsd:complexType name="TypeName">
 <xsd:sequence>
 <xsd:element name="elem1" type="Type1"/>
 <xsd:element name="elem2" type="Type2"/>
 ...
 <xsd:element name="elemN" type="TypeN"/>
 </xsd:sequence>
 </xsd:complexType>

Generated C code:

 typedef struct TypeName {
 Type1 elem1;
 Type2 elem2;
 ...
 TypeN elemN;
 } TypeName;

Generated C++ code:

 class TypeName : public OSXSDComplexType {
 public:
 Type1 elem1;
 Type2 elem2;
 ...
 TypeN elemN;

XSD Complex Type to C/C++ Type Mappings

47

 } ;

Optional Elements
Elements within a sequence definition may be declared to be optional by using the minOccurs="0" facet. This indicates
that the element is not required in the encoded message. An additional construct is added to the generated code to
indicate whether an optional element is present in the message or not. This construct is a bit structure placed at the
beginning of the generated sequence structure or class. This structure always has variable name m (for ‘mask’) and
contains single-bit elements of the form ‘elemNamePresent’ as follows:

 struct {
 unsigned elemName1Present : 1,
 unsigned elemName2Present : 1,
 ...
 } m;

In this case, the elements included in this construct correspond to only those elements marked as optional (i.e. with
minOccurs="0" facet) within the sequence group definition. If a sequence contains no optional elements, the entire
construct is omitted.

For example, the following XSD sequence definition declares one optional and one required element:

 <xsd:complexType name="SeqWithOptElem">
 <xsd:sequence>
 <xsd:element name="reqElem" type="xsd:string"/>
 <xsd:element name="optElem" type="xsd:integer" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

The C type that is generated for this XSD type is as follows:

 typedef struct SeqWithOptElem {
 struct {
 unsigned optElemPresent : 1;
 } m;
 const OSXMLSTRING reqElem;
 OSINT32 optElem;
 } SeqWithOptElem;

In this case, if the optElemPresent flag is set to FALSE in a variable of this type, the contents of the optElem field
will not be included in an encoded XML instance of the type. Similarly, after decoding, the optElemPreseent flag can
be tested to see if the message that was decoded contained this element. If this value is FALSE, the contents of the
optElem field in the variable are undefined.

The C++ case is similar except that the mask structure is contained within the generated C++ class definition:

 class SeqWithOptElem : public OSRTBaseType {
 public:
 struct {
 unsigned optElemPresent : 1;
 } m;
 const OSXMLStringClass reqElem;
 OSINT32 optElem;
 ...

XSD Complex Type to C/C++ Type Mappings

48

 } ;

The constructors for this class (not shown) will set all bits in the mask to zero.

Repeating Elements
Elements within a sequence definition may be declared to be repeating by using the minOccurs and/or maxOccurs
facets. In this case, a C or C++ list or array container type structure is used instead of a C/ C++ element type definition.
This container holds a series of objects of the element type.

If the C element type is a simple type and the maximum number of elements (maxOccurs) is less than or equal to
10,000, then an array type of the following form is used:

 struct {
 OSUINT32 n; /* if -x64 is not used */
 OSSIZE n; /* if -x64 is used */
 ElemType elem[maxOccurs];
 }

In this definition, n is used to hold the count of element occurrences to be encoded (or that were decoded), and elem
holds the actual element data values.

If either of the above conditions is not true, a linked list type is used to hold a dynamic list of the data objects. This
type is OSRTDList (run-time doubly linked list). It is defined in rtxDList.h as follows:

 /* Doubly-linked list types */

 typedef struct _OSRTDListNode {
 const void* data;
 struct _OSRTDListNode* next;
 struct _OSRTDListNode* prev;
 } OSRTDListNode;
 typedef struct OSRTDList {
 OSSIZE count;
 OSRTDListNode* head;
 OSRTDListNode* tail;
 } OSRTDList;

There is a complete set of functions available for adding, deleting, and traversing lists of this type available in the run-
time library. See the Doubly-Linked List Utility Functions section for documentation on these functions.

For C++, there are corresponding class definitions (OSRTDListClass and OSRTObjListClass) that extend the OSRT-
DList structure and contain constructors and methods for adding, removing, and finding items in the list.

For C++ with -use-qt, a Qt collection class is used.

The following example shows a sequence with two repeating elements. The first will cause an array type to be gen-
erated, the second, a list:

 <xsd:complexType name="SeqWithArrayAndList">
 <xsd:sequence>
 <xsd:element name="anArray" type="xsd:integer"
 maxOccurs="10"/>
 <xsd:element name="aList" type="SomeOtherType"
 maxOccurs="unbounded"/>
 </xsd:sequence>

XSD Complex Type to C/C++ Type Mappings

49

 </xsd:complexType>

The C type that is generated for this XSD type is as follows:

 typedef struct SeqWithArrayAndList {
 struct {
 OSUINT32 n; /* if -x64 is not used */
 OSSIZE n; /* if -x64 is used */
 OSINT32 elem[10];
 } anArray;
 /* List of SomeOtherType */
 OSRTDList aList;
 } SeqWithOptElem;

Note that a comment is added to the generated C structure before the list declaration to indicate what type of objects
the list is to contain.

In the case of C++, a constructor is added to the generated array structure to initialize the number of elements to
zero. An inline class is generated for the list variable that extends the OSRTDListClass or OSRTObjListClass and adds
methods to append items to the list and retrieve items from the list:

 class SeqWithArrayAndList : public OSRTBaseType {
 public:
 struct anArray_array {
 OSUINT32 n; /* if -x64 is not used */
 OSSIZE n; /* if -x64 is used */
 OSINT32 elem[10];
 anArray_array() { n = 0; }
 } anArray;
 /* List of SomeOtherType */
 class aList_list : public OSXSDComplexType {
 public:
 OSRTObjListClass mElemList;
 void append (SomeOtherType* pdata);
 void appendCopy (const SomeOtherType* pdata);
 const SomeOtherType* getItem (int idx);
 } aList;
 ...
 } ;

The linked list memory management policy is as follows:

1. If an item is appended to a list using the append method, the pointer to the item is stored directly in the list node
structure (i.e. a deep-copy is not done). It is assumed that this memory was dynamically allocated using the C++
new operator. The list will assume ownership of this memory upon assignment and delete the object when the list
is destroyed.

2. If an item is appended to an object list using the appendCopy method, a copy is made of the original item using
the object’s built-in clone method. The list will own the memory of the cloned item and destroy it at the time the list
is destroyed.

3. If a copy is made of the list, the list’s copy constructor will make a full copy of all items in the list and delete all
memory upon destruction.

If the -usestl option is specified on the command line, a std::vector will be generated instead of an inner list class. The
vector’s type parameter will be a pointer to the repeating type. The outer class’ copy operator, copy constructor, and

XSD Complex Type to C/C++ Type Mappings

50

destructor will copy and delete items from the vector as needed. The vector should be populated with items allocated
on the free store using operator new.

If the -use-qt option is specified on the command line, a Qt collection class will be used instead of an inner list class. The
collection will contain a pointer type or a non-pointer type, depending on whether a) the element is nillable (requires
a pointer type) and b) whether the element's type is atomic or not (non-atomic cases require pointer types). The outer
class’ copy operator, copy constructor, and destructor will copy and delete items from the vector as needed. The vector
should be populated with items allocated on the free store using operator new.

Nillable Elements
Elements may be declared nillable by using the nillable="true" facet. When an element is declared nillable, an
occurrence of that element in an XML document may have an xsi:type attribute with a value of "true", which requires
its contents to then be empty.

XBinder models the nilled status of elements according to the following rules:

• If the element is simple type, a null pointer represents a nilled element.

• If the element is complex type and non-repeating, then a field is added to the "m" structure of the type that contains
the element. It is named <element_name>Nil.

• If the element is complex type and repeating, then an OSDynOctStr is used to hold a string of bits, each bit repre-
senting a nil flag for one of the occurrences of the element. In this case, helper methods are generated for setting
and getting the nilled status for each occurrence of the element.

The signatures of the helper methods depend on the language and whether the nillable elements appear in a choice
group:

 //C signatures for elements in a choice group
 int <Type>_setNil(OSCTXT* pctxt, <Type>* pvalue, size_t index, OSBOOL value);
 OSBOOL <Type>_isNilSet(<Type>* pvalue, size_t index);

 //C signatures for elements in sequence or all group
 int <Type>_<element>_setNil(OSCTXT* pctxt, <Type>* pvalue, size_t index, OSBOOL value);
 OSBOOL <Type>_<element>_isNilSet(<Type>* pvalue, size_t index);

 //C++ signatures for elements in a choice group
 int setNil(size_t index, OSBOOL value);
 OSBOOL isNilSet(size_t index);

 //C++ signatures for elements in sequence or all group
 int <element>_setNil(size_t index, OSBOOL value);
 OSBOOL <element>_isNilSet(size_t index);

In the following example, a sequence "nilsInSequence" has four nillable elements: one_int is a non-repeating, simple
type element; many_int is a repeating, simple type element; one_complex is a non-repeating, complex type element;
and many_complex is a repeating, complex type element.

The generated C code would resemble the following:

 typedef struct nilsInSequence {

XSD Complex Type to C/C++ Type Mappings

51

 struct {
 //Flag for one_complex's nilled state
 unsigned one_complexNil : 1;
 ...
 } m;

 /* String of flags for many_complex's nilled states */
 OSDynOctStr many_complexNilFlags; /* if -x64 is not used */
 OSDynOctStr64 many_complexNilFlags; /* if -x64 is used */

 OSRTDList many_complex;

 //null pointer represents a nilled one_int element
 OSINT32 *one_int;

 //null pointers represent a nilled many_int element
 struct {
 OSUINT32 n; /* if -x64 is not used */
 OSSIZE n; /* if -x64 is used */
 OSINT32 *elem[...];
 } many_int;
 ...
 } nilsInSequence;

 //Specify whether a given occurrence of many_complex is nilled or not.
 //(index is 0-based).
 int nilsInSequence_many_complex_setNil(
 OSCTXT* pctxt, nilsInSequence* pvalue, size_t index, OSBOOL value);

 //Check whether a given occurrence of many_complex is nilled or not.
 OSBOOL nilsInSequence_many_complex_isNilSet(nilsInSequence* pvalue,
 size_t index);

The generated C++ code would resemble the following:

 class nilsInSequence : public OSXSDComplexType {
 public:

 //null pointers represent a nilled many_int element
 struct many_int_array : public OSRTBaseType {
 OSINT32 *elem[...];
 ...
 } ;
 many_int_array many_int;

 struct {
 //Flag for one_complex's nilled state
 unsigned one_complexNil : 1;
 ...
 } m;
 ::MyComplex *one_complex;

XSD Complex Type to C/C++ Type Mappings

52

 //String of flags for many_complex's nilled states
 OSDynOctStr many_complexNilFlags;
 many_complex_list many_complex;

 //null pointer represents a nilled one_int element
 OSINT32 *one_int;

 //Specify whether a given occurrence of many_complex is nilled or not.
 //(index is 0-based).
 int many_complex_setNil(size_t index, OSBOOL value);

 //Check whether a given occurrence of many_complex is nilled or not.
 OSBOOL many_complex_isNilSet(size_t index);

 ...
 };

Nested Types
It is possible to nest other XSD sequence or choice content model groups within another sequence. For example, it is
possible to nest a sequence definition within another sequence definition as follows:

 <xsd:complexType name="A">
 <xsd:sequence>
 <xsd:element name="x" type="xsd:string"/>
 <xsd:sequence minOccurs="0">
 <xsd:element name="y" type="xsd:integer"/>
 <xsd:element name="z" type="xsd:boolean"/>
 </xsd:sequence>
 </xsd:sequence>
 </xsd:complexType>

In this example, the type has three elements – x , y, and z. A nested SEQUENCE is used with the y and z elements
to indicate the group is optional.

The XBinder compiler recursively pulls all of the nested content model groups (i.e. the embedded sequence and choice
definitions) out of the sequence type to form a series of types that contain only a single level of elements. The names
of the newly formed types are of the form BaseTypeName_S where BaseTypeName is the name of the main type and
S is the sequential position of the element within the construct.

Note: The format of newly formed type name was changed from XBinder v1.0.x. Previously, the format was
BaseTypeName_LxS, where L was the nesting level and S the relative sequence number. This was found to
cause ambibuous names in some situations, therefore the format was changed. Users of the older version can
still generate names in this form by using the -compat 1.0 command-line switch.

For example, in the definition above, the following two C types are generated to model the XSD type above:

 typedef struct A_2 {
 OSINT32 y;
 OSBOOL z;
 } A_2;

XSD Complex Type to C/C++ Type Mappings

53

 typedef struct A {
 struct {
 unsigned _seq2Present : 1;
 } m;
 const OSUTF8CHAR* x;
 A_2 _seq2;
 } A;

In this case, XBinder created the type A_2 to represent the inner sequence. It then added the _seq2 element to the main
C type using this type. This allows all of the elements in the inner sequence to be managed as a group in the generated
code. This is particularly useful if the element group is optional or repeating.

The C++ generated code is similar except that items are in the form of class definitions instead of structures.

Any Element
An element in a sequence can be declared using the xsd:any keyword to indicate that an element of any type can be
present in that position. An example of this type of construct is as follows:

 <xsd:complexType name="SeqWithAny">
 <xsd:sequence>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:any processContents="lax"/>
 </xsd:sequence>
 </xsd:complexType>

In this case, the element a is followed by another element with any name and of any type. The processContents="lax"
attribute tells a schema processor to do lax validation processing on the element in this position – something that is
of no concern to the XBinder compiler.

The generated C type definition for this type is as follows:

 typedef struct SeqWithAny {
 OSXMLSTRING a;
 OSXMLSTRING _any;
 } SeqWithAny;

C++ is similar except that the standard class pattern is used:

 class SeqWithAny : public OSRTBaseType {
 public:
 OSXMLStringClass a;
 OSXMLStringClass _any;
 ...
 } ;

In this case, the compiler has inserted an OSXMLSTRING typed element to represent the any field. This contains a
UTF-8 character string containing the complete XML text string value.

An example code snippet that could be used to populate a C variable of this type for encoding is as follows:

 const OSUTF8CHAR* anyData = (const OSUTF8CHAR*)
 "<anyData>this is test data</anyData>";
 SeqWithAny testSeq;

XSD Complex Type to C/C++ Type Mappings

54

 testSeq.a.value = (const OSUTF8CHAR*)"test string";
 testSeq._any.value = anyData;
 ...

ALL
The XSD ALL type <xsd:all> is a complex type consisting of a series of element definitions. These elements can
reference other XSD types including other complex types. The main difference between this construct and a sequence
is the elements can appear in any order (in a sequence, they must appear in the order they were declared).

The C type definition that is generated for an ALL is identical to that for a SEQUENCE above except for the addition
of an order array. This array is added to control the order in which the elements are encoded. It appears as a special
element within the generated C structure or C++ class as follows:

 typedef struct TypeName {
 elements ...

 /* encoding control */
 OSUINT8 _order[n];
 } TypeName;

The C initialization function for the type or C++ constructor will set this array to sequential order. A user can then
alter this order if they would like to encode the elements in a different order. Also, on decode, the order the elements
were received in is preserved in this array. That way, if the instance is reencoded, the elements will appear in the same
order as in the original instance.

CHOICE
The XSD CHOICE type <xsd:choice> is a complex type consisting of a series of element definitions from which one
may be selected to include in a message instance. It is converted into a C or C++ structured type containing an integer
for the choice tag value (t) followed by a union (u) of all of the equivalent types that make up the CHOICE elements.

The tag value is simply a sequential number starting at one for each alternative in the CHOICE. For C, a #define
constant is generated for each of these values. The format of this constant is T_TypeName_elemName where TypeName
is the name of the XSD complexType and elemName is the name of the CHOICE alternative. For C++, an enumerated
type is added to the class with enumerations of the form T_elemName.

The union of choice alternatives is made of the equivalent C or C++ type definition followed by the element name
for each of the elements. The rules for element generation are essentially the same as was described for SEQUENCE
above. Constructed types or elements that map to C structured types are pulled out and temporary types are created.
Names for elements that are not named (e.g., for an inline content group) are automatically generated when needed.

The general mapping is as follows:

XSD type:

 <xsd:complexType name="TypeName">
 <xsd:choice>
 <xsd:element name="elem1" type="Type1"/>
 <xsd:element name="elem2" type="Type2"/>
 ...
 <xsd:element name="elemN" type="TypeN"/>
 </xsd:choice>

XSD Complex Type to C/C++ Type Mappings

55

 </xsd:complexType>

Generated C code:

 /* choice tag constants */
 #define T_TypeName_elem1 1
 #define T_TypeName_elem2 2
 ...
 #define T_TypeName_elemN N

 typedef struct TypeName {
 OSUINT16 t;
 union {
 /* t = 1 */
 Type1 elem1;
 /* t = 2 */
 Type2 elem2;
 ...
 /* t = N */
 TypeN elemN;
 } u;
 } TypeName;

Generated C++ code:

 class TypeName : public OSXSDComplexType {
 public:
 enum {
 T_elem1 1
 T_elem2 2
 ...
 T_elemN N
 };
 OSUINT16 t;
 union {
 /* t = 1 */
 Type1 elem1;
 /* t = 2 */
 Type2 elem2;
 ...
 /* t = N */
 TypeN elemN;
 } u;
 ...
 } ;

In most cases, the generated elements within the C++ union construct will be pointers to dynamic variables rather than
inline static value references.1One exception to this rule is if the referenced type of the element is a simple, atomic
type such as an integer. The reason for using pointers is to keep the size of the structures small (otherwise, it will be
sized to fit the largest possible variable size even if that alternative is not being used) and to avoid problems with C+
+ constructor invocations if C++ types with constructors are referenced within the union.

A second exception is for nillable elements of simple type. In that case, a pointer type is used so that a null pointer can
be used to represent a nilled element. See the discussion of nillable elements under the section on sequences above.

1For C, inline static value references are used. This is for historical reasons.

XSD Complex Type to C/C++ Type Mappings

56

It is possible to nest XSD sequence or choice content model groups within a choice model group. The rules for handling
this are as described in the handling of nested types for sequence above.

Generated C++ Get/Set Methods
For C++, methods are generated to assist the user in getting, setting, or querying the choice construct variable. These
methods are of the form get_elemName, set_elemName, and is_elemName where elemName would be replaced with
the name of the element. The get method will return a pointer to the choice item only if it is the selected item; otherwise
it will return null. The is method returns a boolean value of true if the element is the selected element or false otherwise.
The set method sets the element to the given value and selects it by setting the t value.

C Example

The following is a common example of a choice construct with a nested sequence. This allows element a or element
b or both elements to be present in an XML instance of the type:

 <xsd:complexType name="AOrBOrBothType">
 <xsd:choice>
 <xsd:sequence>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:string"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:element name="b" type="xsd:string"/>
 </xsd:choice>
 </xsd:complexType>

The generated C code for this type is as follows:

 typedef struct AOrBOrBothType_1 {
 struct {
 unsigned bPresent : 1;
 } m;
 OSXMLSTRING a;
 OSXMLSTRING b;
 } AOrBOrBothType_1;

 /* choice tag constants */
 #define T_AOrBOrBothType__seq1 1
 #define T_AOrBOrBothType_b 2

 typedef struct AOrBOrBothType {
 OSUINT16 t;
 union {
 /* t = 1 */
 AOrBOrBothType_1 *_seq1;
 /* t = 2 */
 OSXMLSTRING* b;
 } u;
 } AOrBOrBothType;

In this case, XBinder created the type AOrBOrBothType_1 to represent the inner sequence. It then added the _seq1
element to the main C type using this type. A user populating the structure would use the _seq1 element to specify
element a or both and would use the b element to specify choice b.

XSD Complex Type to C/C++ Type Mappings

57

C++ Example

The C++ code generated for the example schema above is as follows:

 class AOrBOrBothType_1 : public OSXSDComplexType {
 public:
 struct {
 unsigned bPresent : 1;
 } m;

 OSXMLStringClass a;
 OSXMLStringClass b;
 ...
 } ;

 class AOrBOrBothType : public OSXSDComplexType {
 public:
 // tag constants
 enum {
 T__seq1 = 1,
 T_b = 2
 } ;
 OSUINT16 t;
 union {
 /* t = 1 */
 AOrBOrBothType_1 *_seq1;
 /* t = 2 */
 OSXMLStringClass *b;
 } u;

 ...

 inline AOrBOrBothType_1* get__seq1 () {
 return u._seq1;
 }
 inline OSBOOL is__seq1 () {
 return (t == T__seq1);
 }
 void set__seq1 (const AOrBOrBothType_1& value);

 inline OSXMLStringClass* get_b () {
 return u.b;
 }
 inline OSBOOL is_b () {
 return (t == T_b);
 }
 void set_b (const OSXMLStringClass& value);
 } ;

This shows the generated get/set methods as well as the generated member variables in the class. If the user wanted to
set the class to the nested sequence value, the set__seq1 method could be used. If the user wanted to determine if the b
element was selected in the class and then get the value, the following code snippet could be used (object is assumed
to be an instance of the AOrBOrBothType class):

 if (object.is_b()) {

XSD Complex Type to C/C++ Type Mappings

58

 OSXMLStringClass* value = object.get_b();
 }

Substitution Groups
Substitution groups are very similar to choice types. They allow a given base element (refered to as the substitution
group head) to be replaced with a different element. The replacement element is designated as being part of the group
through the use of the XSD substitutionGroup attribute.

For example, the following element declarations declare a group in which the head element (Publication) would be
replaced with either the Book element or Magazine element:

 <xsd:element name="Publication" abstract="true"
 type="PublicationType"/>

 <xsd:element name="Book" substitutionGroup="Publication"
 type="BookType"/>

 <xsd:element name="Magazine" substitutionGroup="Publication"
 type="MagazineType"/>

In these declarations, the types BookType and MagazineType must be derived from the substitution group head type (in
this case, PublicationType). This now allows Book or Magazine to be used anywhere where Publication was declared
to be used (in fact, the elements in this case must be Book or Magazine because Publication was declared to be abstract
and therefore cannot appear in an XML instance).

XBinder generates a special type to hold each of the substitution group alternative elements. This is a C struct type
containing an integer tag value (t) that identifies the substitution alternative followed by a union (u) of all of the
alternative element types. This is identical to the mapping for the XSD choice type described in the previous section.

The format of the name for the special type is “_<element>SG", where <element> would be replaced with the name
of the substitution group head element. In the example above, the generated type name would be “_PublicationSG".

The general mapping is as follows:

XSD type:

 <xsd:element name="ElemName" type="ElemType"/>

 <xsd:element
 name="AltName1"
 substitutionGroup="ElemName"
 type="AltType1"/>

 <xsd:element
 name="AltName2"
 substitutionGroup="ElemName"
 type="AltType2"/>

 ...

 <xsd:element
 name="AltNameN"
 substitutionGroup="ElemName"
 type="AltTypeN"/>

XSD Complex Type to C/C++ Type Mappings

59

Generated C code:

 /* choice tag constants */
 #define T__ElemNameSG_ElemName 1
 #define T__ElemNameSG_AltName1 2
 #define T__ElemNameSG_AltName2 3
 ...
 #define T__ElemNameSG_AltNameN N+1

 typedef struct _ElemNameSG {
 OSUINT16 t;
 union {
 /* t = 1 */
 ElemType ElemName;
 /* t = 2 */
 AltType1 AltName1;
 /* t = 3 */
 AltType2 AltName2;
 ...
 /* t = N+1 */
 AltTypeN AltNameN;
 } u;
 } _ElemNameSG;

Generated C++ code:

 class _ElemNameSG : public OSRTBaseType {
 public:
 enum {
 T_ElemName 1
 T_AltName1 2
 ...
 T_AltNameN N
 };
 OSUINT16 t;
 union {
 /* t = 1 */
 ElemType ElemName;
 /* t = 2 */
 AltType1 AltName1;
 ...
 /* t = N+1 */
 AltTypeN AltNameN;
 } u;
 ...
 } ;

Notes:

1. If the substitution group head element is abstract, then an entry will not be added to the generated type for it. This
is because it cannot be used in an XML instance of the type.

2. The choice tag constants (T_TypeName_type) are the identifiers of each of the particular values in the union. The
selected value is stored in the t member variable of the generated structure. In the case of C++, the tag values are
in the form of an enum construct within the class containing enumerations of the form T_type.

XSD Complex Type to C/C++ Type Mappings

60

Attributes
The XSD ComplexType syntax allows for the specification of attributes that can be added to the start element tag for
an XML instance of the type. XBinder handles attributes the same way it does normal elements. They are added as
typed fields to the C struct or C++ class definition for the complex type.

The general mapping is as follows:

XSD type:

 <xsd:complexType name="TypeName">
 <xsd:group>
 ...
 </xsd:group>
 <xsd:attribute name="attr1" type="Type1"/>
 <xsd:attribute name="attr2" type="Type2"/>
 ...
 <xsd:attribute name="attrN" type="TypeN"/>
 </xsd:complexType>

Generated C code:

 typedef struct TypeName {
 group type definition..

 /* attributes */
 Type1 attr1;
 Type2 attr2;
 ...
 TypeN attrN;
 } TypeName;

Generated C++ code:

 class TypeName : public OSXSDComplexType {
 public:
 group type definition..

 /* attributes */
 Type1 attr1;
 Type2 attr2;
 ...
 TypeN attrN;

 ...
 } ;

In the definition above, group can be any content model group type (sequence, all, choice, or group). It is an optional
item – it is possible to omit the group completely to form a type with empty content that only contains attributes.

Attributes are optional by default and are handled in the same way as optional elements. A bit is added to the optional
bit mask at the beginning of the structure with the name attrPresent (where attr is the attribute name). This bit is set
to true if the attribute is to be added to a message instance or false if it is to be omitted.

XSD Complex Type to C/C++ Type Mappings

61

Attributes that contain a default or fixed value are handled by modifying the initialization and/or encode/decode func-
tions. A default value will be handled by adding a statement to the initialization function for the type to set the attribute
to the default value. The user can later override this value in order to change it in a message instance.

A fixed value also causes a statement to be added to the generated C initialization function or C++ constructor to set the
attribute to the given fixed value. Unlike default value, it is not possible to override this value. The generated encode
function contains hard-coded logic to ignore the value in the type variable and encode the fixed value. On the decode
side, the incoming value will be checked to make sure it equals the fixed value. If not, an error will be flagged and
the value set to the fixed value in the typed variable.

ComplexContent
The XSD ComplexContent type <xsd:complexContent> is used to create a modified version of a base type through
extension or restriction mechanisms. It is similar in concept to creating derived types in Java or C++. ComplexContent
is handled differently depending on whether C or C++ code is being generated. For C, the type is converted into a C
structured type containing a base element (_base) and, optionally, an extensions element (_ext) and additional attribute
elements. The extension element will only appear if the extension mechanism is used to add additional elements to an
existing content model group (sequence, all, or choice).

In addition to the standard type that is generated to hold the type’s content, a special derivations type is also generated.
This is generated in a separate file called <project>Derivations.h. This type is based on the base type of the derivation
(i.e. the complexContent base element) and contains a union of all of the possible types that are derived from a given
base. A reference to this type is used in all place where the base type is referenced. This makes it possible to handle
type susstituition through the XML schema instance type attribute (xsi:type).

For C++, two distinct derivation models are supported - the extended and interface models.

The extended model is the model that was used in XBinder up to version 1.4. It is the model that would seem most
natural in dealing with complexContent extensions. The generated base class contains all elements and attributes that
were defined to exist in the base. The generated class for the complexContent type then inherits from this base class
and adds whatever extended elements or attributes were added via the extension mechanism.

It was discovered, however, that this model could not cover all of the complexContent use cases in C++. In particular,
certain types of complexContent restrictions caused problems, especially when the base class contained wildcards
such as xsd:anyType or xsd:anyAttribute. The result was a very generic base type which was ill-suited for use with
the special restriction cases. For this reason (and also for wishing to avoid the use of C++ multiple inheritance), the
interface model was developed.

In the interface model, the inheritance mechanism is used with the generated derivations classes to make type substi-
tution possible. All content items (elements and attributes) for a given complexContent type are aggregated in the gen-
erated class and then the derivations class is used as the base class. The derivations class is fully abstract - it contains
no data items. It’s purpose is to act as an interface specification does in Java, it provides only a placeholder for the
use of any of the concrete classes that can be used in the type.

XBinder 2.0 and higher nows supports both models. Either can be explicitly chosen by using the -derivModel com-
mand line switch or corresponding GUI option. If this option is not used, a model is automatically selected based on
the schema being compiled. In general, if the schema being compiled contains no complexContent restrictions, the
extended model will be chosen.

Element Extension
The general mapping for complexContent with an extension element group is as follows:

XSD type:

XSD Complex Type to C/C++ Type Mappings

62

 <xsd:complexType name="TypeName">
 <xsd:complexContent>
 <xsd:extension base="BaseType">
 <xsd:group>
 <xsd:element name="elem1" type="Type1"/>
 <xsd:element name="elem2" type="Type2"/>
 ...
 <xsd:element name="elemN" type="TypeN"/>
 </xsd:group>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

Generated C code:

 typedef struct TypeName_2 {
 group type definition..
 } TypeName_2;

 typedef struct TypeName {
 BaseType base;
 TypeName_2 ext;
 } TypeName;

 typedef struct BaseType_derivations {
 OSUINT16 t;
 union {
 /* t = 1 */
 struct BaseType *baseType;
 /* t = 2 */
 struct TypeName *typeName;
 } u;
 } BaseType_derivations;

Generated C++ code (extended model):

 class TypeName_2 : public OSXSDComplexType {
 group type definition..
 } ;

 class TypeName : public BaseType {
 public:
 TypeName_2 _ext;
 } ;

Generated C++ code (interface model):

 class TypeName : public BaseType_derivations {
 public:
 group type definition..
 } ;

 class BaseType_derivations : public OSXSDComplexType {
 public:
 BaseType_derivations () {}

XSD Complex Type to C/C++ Type Mappings

63

 ...
 } ;

Notes:

1. group in the extension group definition above can be any content model group type (sequence, all, choice, or group).

2. In the case of C and C++ extended, the extension group is pulled out to form the temporary type (TypeName_2).
The internals of this type depend on the content group type.

3. In the case of C++ interface, all content items (attributes and elements) are contained in the derived class.

Example: Extension Elements

The following complexContent type contains a choice of two additional elements that were not defined in the base
type (ProductType):

 <xsd:complexType name="ShirtType">
 <xsd:complexContent>
 <xsd:extension base="ProductType">
 <xsd:choice>
 <xsd:element name="size" type="SizeType"/>
 <xsd:element name="color" type="ColorType"/>
 </xsd:choice>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

The following are the C typedefs that are generated for this definition:

 #define T_ShirtType_2_size 1
 #define T_ShirtType_2_color 2

 typedef struct EXTERN ShirtType_2 {
 OSUINT16 t;
 union {
 /* t = 1 */
 SizeType size;
 /* t = 2 */
 ColorType color;
 } u;
 } ShirtType_2;

 typedef struct EXTERN ShirtType {
 ProductType _base;
 ShirtType_2 _ext;
 } ShirtType;

 #define T_ProductType_derivations_productType1
 #define T_ProductType_derivations_shirtType2

 struct EXTERN ProductType;
 struct EXTERN ShirtType;

XSD Complex Type to C/C++ Type Mappings

64

 typedef struct EXTERN ProductType_derivations {
 OSUINT16 t;
 union {
 /* t = 1 */
 struct ProductType *productType;
 /* t = 2 */
 struct ShirtType *shirtType;
 } u;
 } ProductType_derivations;

The case of C++ with the extended model is similar:

class ShirtType : public ProductType {
public:
 // tag constants
 enum {
 T_size = 1,
 T_color = 2
 } ;
 /**
 * ShirtType member variables
 */
 OSUINT16 t;
 union {
 /* t = 1 */
 SizeType *size;
 /* t = 2 */
 ColorType *color;
 } u;

In the case of the C++ interface model, all content items are added to the ShirtType class and the class is derived from
the ProductType_derivations base class:

 class EXTERN ShirtType_2 : public OSXSDComplexType {
 public:
 // tag constants
 enum {
 T_size = 1,
 T_color = 2
 } ;
 OSUINT16 t;
 union {
 /* t = 1 */
 ::SizeType *size;
 /* t = 2 */
 ::ColorType *color;
 } u;
 ...
 } ;

 class EXTERN ShirtType : public ProductType_derivations {
 public:
 ::ProdNumType number;
 OSXMLStringClass name;
 ::ShirtType_2 _ext;

XSD Complex Type to C/C++ Type Mappings

65

 ...
 } ;

 /**
 * Types derived from this base type:
 * ProductType
 * ShirtType
 */
 class EXTERN ProductType_derivations : public OSXSDComplexType {
 public:
 (no content)..
 } ;

Attribute Extension
It is possible to extend a base type to contain additional attributes. In this case, the additional attribute definitions are
added to the structure generated for the complexContent type.

The general mapping for complexContent with extension attributes is as follows:

XSD type:

 <xsd:complexType name="TypeName">
 <xsd:complexContent>
 <xsd:extension base="BaseType">
 <xsd:attribute name="attr1" type="Type1"/>
 <xsd:attribute name="attr2" type="Type2"/>
 ...
 <xsd:attribute name="attrN" type="TypeN"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

Generated C code:

 typedef struct TypeName {
 BaseType base;

 /* attributes */
 Type1 attr1;
 Type2 attr2;
 ...
 TypeN attrN;
 } TypeName;

Generated C++ code:

 class TypeName : public BaseType {
 /* attributes */
 Type1 attr1;
 Type2 attr2;
 ...
 TypeN attrN;

XSD Complex Type to C/C++ Type Mappings

66

 ...
 } ;

In this case, the attributes are handled the same as they were in the Attributes section above. If any are optional, an
optional bit mask is added at the beginning of the complexContent structure. Logic to handle fixed and default values
is added to the initialization and encode/decode functions.

Restrictions
It is possible to restrict elements and attributes in an existing content model group by using the restriction element. For
either elements or attributes, it is possible to exclude optional items from the derived content model. It is also possible
to restrict wildcards (any or anyAttribute) to contain values of a given type. It is also possible to further restrict facets
such as minOccurs and maxOccurs to specify a narrower range than was defined in the base type.

As of XBinder version 1.2, restricted types are handled by generating a completely new type definition containing
only the restricted items. In previous versions, the generated type contained only a single base element that referenced
the base type.

As of XBinder 1.4, the restricted type is now included in the generated derivations type for the items. This makes
it possible to successfully decode an item that referecnes the base type and uses an xsi:type attribute to select the
restricted type for substitution.

The general mapping is as follows:

XSD type:

 <xsd:complexType name="TypeName">
 <xsd:complexContent>
 <xsd:restriction base="BaseType">
 ...
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

Generated C code:

 typedef struct TypeName {
 restricted elements/attributes from BaseType
 } TypeName;

Generated C++ code:

 class TypeName : public OSRTBaseType {
 restricted elements/attributes from BaseType
 } ;

SimpleContent
The XSD simpleContent type <xsd:simpleContent> is used to create a modified version of a base type through exten-
sion or restriction mechanisms. It is similar in concept to creating derived types in Java or C++. The simpleContent
type is a complex type whose content model is a simple type. As a complex type, it may include attributes.

For C, the simpleContent type is represented with a C structured type containing a base element (_base) for the (simple
type) content model and fields for any defined attributes.

XSD Complex Type to C/C++ Type Mappings

67

For C++, a class is generated, derived from OSXSDComplexType, with a member variable called value for the (simple
type) content model and fields for any defined attributes.

Extensions
The only purpose of simple content extensions is to add attributes to an existing base type. The base type must either be a
complex type with simpleContent, or a simple type. In the following example, let SimpleBaseType be the representation
for the simple type that is the content model for TypeName.

The general mapping is as follows:

XSD type:

 <xsd:complexType name="TypeName">
 <xsd:simpleContent>
 <xsd:extension base="BaseType">
 <xsd:attribute name="attr1" type="Type1"/>
 <xsd:attribute name="attr2" type="Type2"/>
 ...
 <xsd:attribute name="attrN" type="TypeN"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

Generated C code:

 typedef struct TypeName {
 SimpleBaseType _base;

 /* attributes */
 Type1 attr1;
 Type2 attr2;
 ...
 TypeN attrN;
 } TypeName;

Generated C++ code:

 class TypeName : public OSXSDComplexType {
 // The simpleType extended by simpleContent
 SimpleBaseType value;

 /* attributes */
 Type1 attr1;
 Type2 attr2;
 ...
 TypeN attrN;

 ...
 } ;

Restrictions
Simple content restrictions are used to restrict the simple content and/or attributes of a complex type. As of XBinder
version 1.2, restricted types are handled by generating a completely new type definition containing only the restricted

XSD Complex Type to C/C++ Type Mappings

68

items. (In previous versions, the generated type contained only a single base element that referenced the base type.)
In the case of a simpleContent restriction, we have to represent a content model consisting of a simple type, and zero
or more attributes. We do this just as is done for simpleContent extensions.

Note: XML Schema allows the <xsd:restriction> element to have an <xsd:simpleType> child (in some cases, it is
actually required). XBinder does not currently support this.

Derivations
The derivations type is a special type generated by the XBinder compiler that collects all possible alternatives for XSD
complexContent types. Its purpose is to allow handling of XML instances in which the type of the content is not known
until run-time and is identified through the special xsi:type attribute. For C, it is similar to a CHOICE construct in that
it contains a union of all possible alternatives. For C++, a single base element is generated that uses inheritance and
polymorphism as the mechanism to identify derived alternatives.

The general mapping is as follows:

XSD type:

 <xsd:complexType name="TypeName1">
 <xsd:complexContent>
 <xsd:extension base="BaseType">
 ...
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="TypeName2">
 <xsd:complexContent>
 <xsd:extension base="BaseType">
 ...
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 ...

Generated C code:

 /* choice tag constants */
 #define T_TypeName_elem1 1
 #define T_TypeName_elem2 2
 ...
 #define T_TypeName_elemN N

 typedef struct BaseType_derivations {
 OSUINT16 t;
 union {
 /* t = 1 */
 Type1 elem1;
 /* t = 2 */
 Type1 elem2;
 ...
 /* t = N */
 TypeN elemN;

XSD Complex Type to C/C++ Type Mappings

69

 } u;
 const OSUTF8CHAR* _xsiType;
 } TypeName;

Generated C++ code:

 class BaseType_derivations :
 public OSXSDComplexType
 {
 (no content - abstract interface only)
 ...
 } ;

Group
The XSD group type <xsd:group> is used to create a reusable content model group. This is similar in concept to
the creation of a standalone type and is handled in the C or C++ language mapping as such. A group declaration is
translated into a C type or C++ class definition. This type definition is then used in places where the group is referenced.

The general mapping is as follows:

XSD type:

 <xsd:group name="TypeName">
 XSD content group definition ..
 </xsd:group>

Generated C code:

 typedef struct TypeName {
 group type definition..
 } TypeName;

Generated C++ code:

 class TypeName : public OSRTBaseType {
 group type definition..
 } ;

Any Type
Types defined in the XSD as anyType are generated as a structure which stores attributes and textual content. In C,
which uses the OSXSDAnyType struct, the textual content is represented by an OSXMLSTRING, and the attributes are
stored in an OSRTDList of OSAnyAttr*. C++ uses the OSXSDAnyTypeClass, which stores the textual content in an
OSXMLSTRING, and the attributes in an OSRTObjListClass of OSAnyAttrClass*.

The general mapping is as follows:

XSD type:

 <xsd:complexType name="TypeName">
 <restriction base="xsd:anyType"/>
 </xsd:simpleType>

Generated C code:

XSD Complex Type to C/C++ Type Mappings

70

 typedef OSXSDAnyType TypeName;

Generated C++ code:

 class TypeName : public OSXSDAnyTypeClass {
 ...
 } ;

For C, a variable of this type can be populated as follows:

 TypeName anyTypeVal;
 OSAnyAttr* pAnyAttr;
 anyTypeVal.value.cdata = FALSE;
 anyTypeVal.value.value = (const OSUTF8CHAR*) “<content>a</content>";
 pAnyAttr = rtxMemAllocType (pctxt, OSAnyAttr);
 pAnyAttr->name = (const OSUTF8CHAR*) “attrname";
 pAnyAttr->value = (const OSUTF8CHAR*) “attrvalue";
 rtxDListAppend (pctxt, &anyTypeVal.attrs, (void*) pAnyAttr);

In the case of C++, a variable of this type can be populated as follows:

 TypeName anyTypeVal;
 OSRTObjListClass* pList = anyTypeVal.getAttrListPtr();
 OSAnyAttrClass* pAttr = new OSAnyAttrClass (“attrname", “attrvalue");
 anyTypeVal.setValue (“<content>a</content>");
 pList->appendCopy (pAttr);

This will set the cdata member to false as above, do a deep-copy of the text into the object, and do a deep-copy of
the attribute into the object.

71

Chapter 6. Configuration File
The default bindings of source schema components to a C/C++ types as presented above may not meet the require-
ments of all applications. In such cases, the default bindings can be customized by using a configuration file. This is
sometimes refered to as a binding schema in similar products. A configuration file contains binding declarations which
are specified by a binding language, the syntax and semantics of which are defined in this section.

Binding Language
The binding language is an XML based language that defines constructs referred to as binding declarations. A binding
declaration can be used to customize the default binding between an XML schema component and its C/C++ repre-
sentation.

The schema for binding declarations is defined in the namespace http://www.obj-sys.com/XBConfig.

Binding Declaration
The configuration file format enables customized binding without requiring modification of the source schema. The
schema component to which the binding declaration applies must be identified explicitly. Minimally, a configuration
file is of the following format.

 <bindings version=”1.0">
 <schemaBindings namespace | schemaLocation = "xsd:anyURI">
 <nodeBindings name | node = "xsd:string">*
 <node bindings declaration>
 <nodeBindings>
 </schemaBindings>
 </bindings>

The schemaBindings node has the attribute namespace or schemaLocation to refer to a schema. The namespace at-
tribute is used to specify a schema using its target namespace. The schemaLocation attribute specifices a schema using
its physical file location.

The nodeBindings node has the attribute name and node to construct a reference to a node within the schema. The
name attribute specifies a node using its QName. The node attribute uses an XPath expression to specify a set of nodes.

A summary of these attribute values is as follows:

namespace: A reference to a schema’s target namespace.

schemaLocation: A URI reference to an XML schema document.

name: The qualified name (QName) of a node within the schema.

node: An XPath 1.01 expression that identifies the schema node within a schema with which to associate binding
declarations.

 1.XML Path Language (XPath) Version 1.0 (http://www.w3.org/TR/xpath)

An example of a configuration file can be found in the section “Configuration File Example”.

Version Attribute
The normative binding schema specifies a global version attribute. This is used to identify the version of the binding
declarations. For example, a future version of this specification may use the version attribute to specify backward

Configuration File

72

compatibility. For this version of the specification, the version must always "1.0". If any other version is specified,
the configuration file will be skipped.

The version attribute must be specified in the root element <bindings> in the configuration file:

 <bindings version="1.0" ... />

Configuration File Language Overview
A binding declaration customizes the default binding of a schema element to a C/C++ representation. The binding
declaration defines one or more customization values each of which customizes a part of C/ C++ representation.

Scope

When a customization value is defined in a binding declaration, it is associated with a scope. A scope of a customization
value is the set of schema elements to which it applies.

The defined scopes are as follows:

• global scope: A customization value defined in <bindings> has global scope. A global scope covers all the
schema elements in the source schema and (recursively) any schemas that are included or imported by the source
schema.

• schema scope: A customization value defined in <schemaBindings> has schema scope. A schema scope covers
all the schema elements in the target namespace of a schema.

• node scope: A customization value defined in <nodeBindings> has node scope. A node scope covers all schema
elements that reference the type definition, the global declaration or the local declaration.

A customization value defined in one scope is inherited for use in a binding declaration covered by another scope as
shown by the following inheritance hierarchy:

• A schema element in schema scope inherits a customization value defined in global scope.

• A schema element in node scope inherits a customization value defined in schema or global scope.

Likewise, a customization value defined in one scope can override a customization value inherited from another scope
as shown below:

• A value in schema scope overrides a value inherited from global scope.

• # value in node scope overrides a value inherited from schema scope or global scope.

Global <bindings> Declaration
The customization values in the “<bindings>” binding declaration have global scope. These affect all elements
within all schemas defined in the compilation project.

Usage

 <bindings version=”1.0”>
 [<prefix>xs:token</prefix>]
 [<schemaBindings>. . .</schemaBindings>]
 [<nameXmlTransform>. . .</nameXmlTransform>]
 [<doubleFormat/>]
 [<decimalFormat/>]
 [<floatFormat/>]
 [<typemap>. . .</typemap>]

Configuration File

73

 [<reservedWords>. . .</reservedWords>]
 ...
 </bindings>

The following attributes are defined for the <bindings> node:

version See the section “Version Attribute” above for details.

The following customization elements may be defined within the global scope:

prefix This is used to specify a prefix that is prepended to all XML names including type names
and global element names to form C/C++ type and variables names. It should be a legal
C/C++ identifier.

schemaBindings This is used to identify individual schemas for schema scope binding declarations (see
Section “<schemaBindings> Declaration”). It can be specified multiple times, but
once per schema.

nameXmlTransform This is used to perform more accurate XML names transformation than prefix allows.
See Section “Advanced XML Names Transformation” for further details.

doubleFormat This specifies a default (global) format for encoding of values of “double“ type. See
Section “XML Numeric Values Format Specification”.

decimalFormat This specifies a default (global) format for encoding of values of “decimal“ type See
Section “XML Numeric Values Format Specification”.

floatFormat This specifies a default (global) format for encoding of values of “float“ type. See Sec-
tion “XML Numeric Values Format Specification”.

typemap This specifies a default (global) mapping of a specific XSD type to a C type (see Sec-
tion “<typemap> Declaration”). It can be specified multiple times. In each typemap
declaration, a list of XSD types separated by space can be mapped to one C type.

reservedWords This element is used to add additional reserved words to the reserved words list. These
are words that are defined in the output target language (for example, C or C++).
XBinder will alter these words when they are defined in a schema file so their is not
a name clash in the output file. By default, all reserved words documented in the C or
C++ standard are included in this table, but it is sometimes necessary to add additonal
words for language extensions used by specific compilers. For example, Visual C++
contains other keywords besides those defined in the ANSI standards.

The reserved word list is specified as a space-separated list of words.

<schemaBindings> Declaration
The customization values in <schemaBindings> binding declarations have schema scope. These apply to all ele-
ments within the referenced XML schema document.

Usage

 <schemaBindings namespace | schemaLocation=”xs:anyURI”>
 [<prefix>xs:token</prefix>]
 [<sourceFile>xs:anyURI</sourceFile>]
 [<nameXmlTransform>. . .</nameXmlTransform>]
 [<doubleFormat/>]
 [<decimalFormat/>]
 [<floatFormat/>]
 [<nodeBindings>. . .</nodeBindings>]

Configuration File

74

 [<typemap>. . .</typemap>]
 [<cppNamespace>. . .</cppNamespace>]
 ...
 </schemaBindings>

The following attributes are defined for <schemaBindings> node:

namespace: A URI reference to a schema’s target namespace. The
processor will look at the target namespace in all of the
schemas currently being compiled for a match with the
given namespace. When an XSD document without a tar-
getNamespace is included into an XSD document with a
targetNamespace, it takes on the including document's tar-
getNamespace. This fact is taken into account.

schemaLocation: URL as it is used in <xsd:import> or
<xsd:include> statements. When this alternative is
used, <sourceFile> should be provided, to map the
schema URL to an actual schema file. No other child ele-
ments should be present. To specify other options, use an
<schemaBindings> element with a namespace attribute.
XBinder does not have the capability to automatically ref-
erence schemas remotely; therefore, any imported or in-
cluded schemas must have been downloaded in advance
and be present on the user’s computer.

The following customization values are defined in schema scope:

prefix: This is used to specify a prefix that is prepended to all
XML names including type names and global element
names to form C/C++ type and variables names. It should
be a legal C/C++ identifier.

sourceFile: The actual schema file path. XBinder does not have the
capability to automatically reference schemas remotely;
therefore, any imported or included schemas must have
been downloaded in advance and be present on the user’s
computer. This element is used to map a schema URL to
a file on the local system.

nameXmlTransform: This is used to perform more accurate XML names trans-
formation than prefix allows. See Section “Advanced
XML Names Transformation” for further details.

doubleFormat: This specifies a schema-level format for encoding of val-
ues of “double“ type. See Section “XML Numeric Values
Format Specification”.

decimalFormat: This specifies a schema-level format for encoding of val-
ues of “decimal“ type See Section “XML Numeric Values
Format Specification”.

floatFormat: This specifies a schema-level format for encoding of val-
ues of “float“ type. See Section “XML Numeric Values
Format Specification”.

nodeBindings: Node scope binding declarations (see Section “<node-
Bindings> Declaration”). This element can be speci-
fied multiple times, but only once per definition.

Configuration File

75

typemap: This specifies a default (global) mapping of a specific
XSD type to a C type (see Section “<typemap> Declara-
tion”). It can be specified multiple times. In each typemap
declaration, a list of XSD types separated by space can be
mapped to one C type.

cppNamespace: This specifies the C++ namespace to use in generated
code. This option only takes effect when the -cppNs com-
mand line option is used. The namespace given using -
cppNs will serve as a default C++ namespace that is over-
ridden for particular schema components using this con-
figuration option.

<nodeBindings> Declaration
The customization values in the <nodeBindings> binding declaration have node scope. These refer to individual
type or element definitions within a schema. It is also possible to reference local elements within complex types for
customization.

Usage

 <nodeBindings name | node=”xs:string”>
 [<prefix>xs:token</prefix>]
 [<nameXmlTransform>. . .</nameXmlTransform>]
 [<array [maxSize=”xs:nonNegativeInteger”/>]]
 [<isBigInteger/>]
 [<isDynamic/>]
 [<ctype> string | numeric | int8 | uint8 | int16 | uint16 | int32 |
 uint32 | int64 | uint64 | size | openType |
 QLinkedList | QList | QVector | QVarLengthArray </ctype>]
 [<noPatternTest/>]
 [<noEncoder/>]
 [<noDecoder/>]
 [<numericFormat>. . .</numericFormat>]
 [<nodeBindings>. . .<nodeBindings>]
 ...
 </nodeBindings>

The following attributes are defined for <nodeBindings> node:

name: This attribute selects a node for configuration processing
based on its QName.

node: An XPath 1.0 expression that identifies the schema node
within the referenced schema with which to associate
binding declarations

The following customization values are defined in node scope:

nameXmlTransform: This is used to perform more accurate XML names trans-
formation than prefix allows. See Section “Advanced
XML Names Transformation” for further details.

prefix: This is used to specify a prefix that is prepended to all
XML names including type names and global element
names to form C/C++ type and variables names. It should
be a legal C/C++ identifier.

Configuration File

76

array: This specifies that an array should be used instead of a
linked list for repeated elements. The maxSize attribute
specifies the maximum size of the array. The default value
if not specified is 100.

isBigInteger: This specifies that this type will be used to store an in-
teger larger than the C or C++ int type on the given sys-
tem (normally 32 bits) or even the 64-bit integer type if
supported (long long, or __int64). A C UTF-8 string type
(OSUTF8CHAR*) will be used to hold a textual represen-
tation of the value. This qualifier can be applied to either
an integer or complex type. In the latter case, all integer
elements within the complex type are flagged as big inte-
gers.

isDynamic: This indicates that dynamic storage (i.e., pointers) should
be used everywhere within the generated types where use
could result in lower memory consumption.

ctype: This is used to specify a specific C type be used in place of
the default definition generated by the XBinder compiler.

For integer types, any of the uint* and int* values can be
used to specify the corresonding C/C++ type. size can be
used to specify OSSIZE, which is typedef'd as size_t.

For floating point types, string specifies the type should
be represented as a string.

For date and time types, XBinder generates string types. It
is possible to use a built-in C structure for these types in-
stead of strings. In this case ctype should contain the value
numeric for the appropriate nodes.

For repeating elements, the Q* options can be used to
specify the Qt collection class to use for that element. Be-
sides allowing you to specify a particular Qt collection
class to use for an element, this can also force the use of a
Qt collection where an array would have otherwise been
used.

noPatternTest: If type uses a pattern facet, this may be used to turn off
the pattern match test.

noEncoder: This may be used to turn off generating encode functions.

noDecoder: This may be used to turn off generating decode functions.

numericFormat: This specifies a node-level format for encoding of numer-
ic values. Affect on values of “double”, “decimal” and
“float” types. See Section “XML Numeric Values Format
Specification”.

nodeBindings: Nested nodeBindings declarations to allow more accurate
references to enclosed elements such as local elements in-
side groups (sequence, all, choice, group, etc).

Configuration File

77

<typemap> Declaration
The customization values in <typemap> binding declarations are used to map a specific XSD type, or a space-
separated list of XSD types, to a C type. This can be done at global or schema level. An example usage would be
to preserve the format of floating point numbers after decoding and reencoding, by mapping those types to a string
representation.

Usage

 <typemap>
 [<xsdtype>. . .<xsdtype>]
 [<ctype>. . .<ctype>]
 ...
 </typemap>

<xsdtype> is used to specify the XSD Type being mapped, and <ctype> is used to specify the C Type. Refer to the
description of <ctype> in the section on <nodeBindings>.

Example

To map xsd:decimal, xsd:double and xsd:float types to string:

 <typemap>
 <xsdtype>decimal double float</xsdtype>
 <ctype>string</ctype>
 </typemap>

It is possible to specify multiple mappings by having multiple pairs of <xsdtype> and <ctype> elements.

Advanced XML Names Transformation
The advanced XML names transformation allows a prefix or suffix to be added to type or element names.

Usage

 nameXmlTransform>
 [<typeName [prefix=”xs:token”] [suffix=”xs:token”]/>]
 [<elementName [prefix=”xs:token”] [suffix=”xs:token”]/>]
 </nameXmlTransform>

It is possible to specify separate prefixes and suffixes for type names and element names. If <typeName> is used
then values of the optional attributes “prefix” and “suffix” will be applied to all custom types in the scope of this
transformation. If <elementName> is used then prefix and suffix will be applied to element names.

XML Numeric Values Format Specification
These qualifiers are used to customize the encoding format of numeric values (XSD double, decimal, or float types).
It is sometimes necessary to have numbers formatted in a certain way (for example, a decimal value format such
as“+0012.00”). By default, all leading and trailing zeros are omitted, as well as the positive sign, so the value above
will be encoded as “12”. It is possible using these qualifiers to specify the exact required format of such values. This
can be done at any scope - global, schema or node. To customize the format of all decimal, double or float values at
the global or schema level, use the <decimalFormat>, <doubleFormat> and <floatFormat> configuration
elements respectively. For the node scope, use <numericFormat> element.

Usage

Configuration File

78

 <decimalFormat | doubleFormat | floatFormat | numericFormat
 [totalDigits=”xs:byte”]
 [fractionDigits=”xs:byte”]
 [fractionMinDigits=”xs:byte”]
 [integerMaxDigits=”xs:byte”]
 [integerMinDigits=”xs:byte”]
 [expSymbol=”xs:token”]
 [expMinValue=”xs:short”]
 [expMaxValue=”xs:short”]
 [expDigits=”xs:byte”]
 [signPresent=”xs:boolean”]
 [pointPresent=”xs:boolean”]
 [expSignPresent=”xs:boolean”]
 [expPresent=”xs:boolean”]
 >

All attributes are optional, the order is not important.

Attribute name Applicable types Description

totalDigits double float decimal Number of total significiant digits.
Trailing and leading zeros are not
counted by this parameter.

fractionDigits double float decimal Number of maximum signficiant dig-
its in fraction part, precision.

fractionMinDigits double float decimal Number of minimum digits in the frac-
tion part. If the fraction part has less
digits than this parameter then trailing
zeros will be added.

integerMaxDigits double float decimal Maximum digits in integer part; if it is
0 and integer part is 0 then integer part
will be omitted, for example .3, or -.3.

integerMinDigits double float decimal Minimum digits in integer part, lead-
ing zeros will be added if necessary.

expSymbol double float Exponent symbol. 'E' or 'e' only; 0 if
no exponent is expected.

expMinValue double float Maximum exponent value. By default,
-infinity.

expMaxValue double float Maximum exponent value. By default,
infinity.

expDigits double float Number of digits in exponent part; if
exponent's value is not enough, trail-
ing zeros will be added.

signPresent double float decimal Indicates (“true” or “false”), sign must
be present, even if value is positive.

pointPresent double float decimal Indicates (“true” or “false”), decimal
point must be present, even if value's
fraction is 0

expPresent double float Indicates (“true” or “false”), exponent
must be present, even if its value is 0.

Configuration File

79

Attribute name Applicable types Description

expSignPresent double float Indicates (“true” or “false”), exponent
sign must be present, even if its value
is positive.

So, to format a decimal value “12” as “+0012.00” the configuration element for node should look as follows:

 <numericFormat fractionMinDigits=”2” integerMinDigits=”4”
 signPresent=”true”/>

Configuration File Example
The following is an example of a configuration file for a framework consisting of two schemas:

 <bindings version="1.0">
 <schemaBindings
 schemaLocation=
 "http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd">
 <sourceFile>C:\XBinder\dev\xsd\SOAP\envelope.xsd</sourceFile>

 <prefix>SOAP_</prefix>

 <nodeBindings node="//xsd:element[@name='myGlobalElem']">
 <prefix>GE_</prefix>
 <ctype>numeric</ctype>
 </nodeBindings>
 </schemaBindings>

 <schemaBindings schemaLocation="core-schema.xsd">

 <nodeBindings node="//xsd:element[@name='Manifest']">
 <prefix>Dsig</prefix>
 </nodeBindings>

 <nodeBindings name="personnelRecord">
 <prefix>ZZZ_</prefix>
 </nodeBindings>

 <nodeBindings node="//xsd:complexType[@name='Dss_Parms']">
 <nodeBindings node=".//xsd:element[@name='p']">
 <isBigInteger/></nodeBindings>
 <nodeBindings node=".//xsd:element[@name='q']">
 <isBigInteger/>
 </nodeBindings>
 <nodeBindings node=".//xsd:element[@name='g']">
 <isBigInteger/>
 </nodeBindings>
 </nodeBindings>
 </schemaBindings>
 </bindings>

80

Chapter 7. Generated C Encode/Decode
Functions
XBinder generates C encode functions to transform data from a populated C structure into an XML message instance.
This process is known as marshalling or serialization in similar products. It generates decode functions to parse data
from an XML message instance and store the data in a variable of the generated C structure. This is known as unmar-
shalling or deserialization in other applications.

The following sections describe procedures for using the XBinder generated functions to encode and decode XML data.

Preparing C Data Variables for Encoding
Before data can be encoded, the C structure for a given data type must be populated. In most cases, this involves the
simple assignment of data items to the elements within the structure. In some cases, however, dynamic memory pointers
are involved. It is necessary to know how dynamic memory works in the run-time in order to populate these fields.

Dynamic Memory Management
The XBinder run-time uses several different memory management schemes in order to provide flexibility in handling
different types of application's memory requirements. The following are the schemes available in this release:

• Standard

• Nibble-Allocation

• Custom

The standard memory allocation algorithm simply maps XBinder run-time function calls directly to the C standard
run-time memory functions malloc, free, and realloc . (Note: in some environments such as some embedded RTOS's
the realloc function may not be available. The built-in run-time provides a custom implementation of this function
using malloc and free for these cases). The advantages of standard management are simplicity and space-optimization.
The primary disadvantage is performance - frequent calls to malloc and free can be detrimental to performance.

The nibble-allocation algorithm is designed to improve performance in the case where frequent requests for small
amounts of memory are made. This is typical of many data-binding applications due to unconstrained types being
declared within the schema. The way this algorithm works is large blocks of memory are allocated up front and then
split up to provide memory for smaller allocation requests. This reduces the number of calls required to the C malloc
and free functions.

Finally, it is possible for a user to build in his or her own custom management by implementing the functions defined
within the standard XBinder run-time memory management interface.

The main entry points to the memory management system for users are the rtxMemAlloc, rtxMemFree, rtxMemFreePtr,
and rtxMemRealloc functions. These are the functions that should always be used for doing memory management -
not the built-in C memory functions.

For more information on memory management, see the section "Memory Management Functions" in the chapter "C
Common Runtime Library" of this manual.

Populating Generated Structure Variables for Encoding
Prior to calling a compiler generated encode function, a variable of the type generated by the compiler must be pop-
ulated. This is normally a straightforward procedure - just plug in the values to be encoded into the defined fields.

Generated C Encode/Decode Functions

81

However, things get more complicated when more complex, constructed structures are involved. These structures fre-
quently contain pointer types which means memory management issues must be dealt with.

There are two alternatives for managing memory for these types:

1. Allocate the variables on the stack and plug the address of the variables into the pointer fields,

2. Use the rtxMemAlloc and rtxMemFreePtr run-time library functions or their associated macros.

Allocating the variables on the stack is an easy way to get temporary memory and have it released when it is no longer
being used. But one has to be careful when using additional functions to populate these types of variables. A common
mistake is the storage of the addresses of automatic variables in the pointer fields of a passed-in structure. An example
of this error is as follows (assume A, B, and C are other structured types):

 typedef struct {
 A* a;
 B* b;
 C* c;
 } Parent;

 void fillParent (Parent* parent)
 {
 A aa;
 B bb;
 C cc;

 /* logic to populate aa, bb, and cc */
 ...

 parent->a = &aa;
 parent->b = &bb;
 parent->c = &cc;
 }

 main ()
 {
 Parent parent;

 fillParent (&parent);

 encodeParent (&parent); /* error: pointers in
 parent reference memory
 that is out of scope */
 …
 }

In this example, the automatic variables aa, bb, and cc go out of scope when the fillParent function exits. Yet the
parent structure is still holding pointers to the now out of scope variables (this type of error is commonly known as
"dangling pointers").

Using dynamic memory for the variables solves this problem. The rtxMemAlloc call can be used to allocate memory
for each of the dynamic fields. The rtxMemFree function is used to release all memory held within the context at once.
This is typically done after the populated variable is encoded. The rtxMemFreePtr function can be used to free an
individual memory element.

Generated C Encode/Decode Functions

82

It is recommended that these functions be used instead of the standard C memory management functions so that if the
underlying memory management scheme is changed (see Dynamic Memory Management above) all memory handling
within the application is changed to the new scheme without any recoding being required.

Accessing Encoded Message Components
After a message has been encoded, the user must obtain the start address and length of the message in order to do
further operations with it. Before a message can be encoded, the user must describe the buffer the message is to be
encoded into by specifying a message buffer start address and size. There are three different types of message buffers
that can be described:

1. static: this is a fixed-size byte array into which the message is encoded

2. dynamic: in this case, the encoder manages the allocation of memory to hold the encoded message

3. stream: in this case, the encoder writes the encoded data directly to an output stream

The static buffer case is generally the better performing case because no dynamic memory allocations are required.
However, the user must know in advance the amount of memory that will be required to hold an encoded message.
There is no fixed formula to determine this number. XML encoding involves the additions of tags and attributes and
other decorations to the provided data that will increase the size beyond the initial size of the populated data structures.
The way to find out is either by trialand- error (an error will be signaled if the provided buffer is not large enough) or
by using a very large buffer in comparison to the size of the data.

In the dynamic case, the buffer description passed into the encoder is a null buffer pointer and zero size. This tells the
encoder that it is to allocate memory for the message. It does this by allocating an initial amount of memory and when
this is used up, it expands the buffer by reallocating. This can be an expensive operation in terms of performance -
especially if a large number of reallocations are required. For this reason, run-time helper functions are provided that
allow the user to control the size increment of buffer expansions. See the C/C++ Run-Time Library Reference Manual
for a description of these functions.

In either case, after a message is encoded, it is necessary to get the start address and length of the message. In the static
buffer case for XML, the start address of the message is simply the start address of the buffer. But in the dynamic case,
a function call is required to get the start address of the message after encoding is complete. The rtXmlGetEncBufPtr
function is provided for this purpose.

Generated XML Encode Functions
Standard XML C encode functions are generated when the -xml switch is specified on the command line (the other
option is stream-oriented XML encoder functions which are generated when both -xml and -stream are specified). For
each generated C type, a C XML encode function is generated. This function will convert a populated C variable of
the given type into an XML encoded message.

Generated C Function Format and Calling Parameters
Generated encode functions are written to a .c file with a name of the following format:

 xsdFileName>Enc.c or
 <wsdlFileName>WSDLEnc.c

where <xsdFileName> is the base name of the XSD file being parsed; and <wsdlFileName> is the base name of the
WSDL file being parsed. For example, if code is being generated for file x.xsd, encode functions for each type and

Generated C Encode/Decode Functions

83

global element defined in the specification will be written to xEnc.c. If the file being processed is a WSDL file, the
suffix would be WSDLEnc.c (for example, x.wsdl would produce xWSDLEnc.c).

The format of the name of each generated XML encode function is as follows:

 [<ns>]XmlET_<typeName>

where <typeName>is the name of the C type for which the function is being generated and <ns>is an optional
namespace setting that can be used to disambiguate element names from multiple sources (note: this should not be
confused with XML namespaces which are different).

The calling sequence for each encode function is as follows:

 status = <encodeFunc>
 (OSCTXT* pctxt, <name>[*] value, const OSUTF8CHAR* elemName,
 OSXMLNamespace* pNS);

In this definition, <encodeFunc> denotes the encode function name defined above.

The pctxtargument is used to hold a context pointer to keep track of encode parameters. This is a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user is required to supply a pointer to a variable of this type declared somewhere in his or her program.

The valueargument contains the value to be encoded or holds a pointer to the value to be encoded. This variable is
of the type generated from the XSD type. The object is passed by value if it is an atomic XSD simple type such as
boolean, integer, etc.. It is passed using a pointer reference if it is a structured type value (in this case, the name will
be pvalue instead of value). Check the generated function prototype in the header file to determine how this argument
is to be passed for a given function.

The elemName argument is used to pass an XML element name for the type. This name is what is included in the
<name> </name> brackets used to delimit an XML item. If a null pointer (0) is passed in for this argument, then no
name wrapper is added to encoded XML item.

The pNS argument is used to specify namespace information. The structure contains a prefix and uri field. If prefix is
set to NULL and uri is set to a string, the encoder will attempt to find the current prefix assigned to the URI by using
internal namespace tables. If prefix is not null, the value in the structure is used without doing a URI lookup. If a null
pointer is passed, no prefix is added to element name.

The function result variable statreturns the status of the encode operation. Status code 0 (zero) indicates the function
was successful. A negative value indicates encoding failed. Return status values are defined in the rtxErrCodes.h
include file. The error text and a stack trace can be displayed using the rtxErrPrint function.

Generated C Encode Functions for Global Elements
For each global element defined within an XSD specification, a special encode function is generated. This is identical
to the encode function for XSD types described above except that the name is formed using the element name instead
of the type name and the function does not contain an elemName argument. In this case, elemName is set to the name
specified in the XSD global element definition. The encode function name prefix in this case is XmlE_ instead of
XmlET_ in order to avoid name clashes when types and global elements have the same name.

These functions are the normal entry points when encoding complete XML message instances. All of the sample
programs use a global element definition to define the top-level message to be encoded for a particular application.

Generated C Encode/Decode Functions

84

Generated C Encode Functions for WSDL Operations
Web service description language (WSDL) documents may contain operation definitions in portType and binding
sections. An encode function is generated for each operation input, output or fault (optional) defined in binding section
in the following format:

 [<ns>]XmlE_<operName>_Input
 [<ns>]XmlE_<operName>_Output
 [<ns>]XmlE_<operName>_Fault

where <operName>is the name of the WSDL operation name and <ns>is an optional namespace setting that can be
used to disambiguate element names from multiple sources (note: this should not be confused with XML namespaces
which are different).

Note: if there are duplicate operation names in differenct portType sections within one WSDL source file, the first
operation uses only the operation name, and other operation(s) with the duplicate names use a fully qualified name
which consists of portType name, and operation name.

The calling sequence for a WSDL operation encode function is as follows:

 status = <encodeFunc> (OSCTXT* pctxt, <name>[*] value);

In this definition, <encodeFunc> denotes the encode function name defined above. The pctxt argument is a pointer to
a context structure. The value or pvalue argument is the item to be encoded either passed by value or pointer. These
arguments and the return status value are the same as previous described for C type encode functions.

Generated C Encode Functions for DOM Encoding
It is possible with XBinder to encode a populated data structure to a W3C-compliant Document Object Model (DOM)
structure instead of directly to XML. This is done by using the -dom command-line switch. When this is done, the
suffix _toDOM is added to generated encode functions.

The calling sequence is also changed to contain a pointer to a Document root node object:

 [ns]XmlEnc_<elemName>_toDOM (OSCTXT* pctxt,
 <typeName>[*] value, OSRTDOMNodePtr* ppRootNode);

The root node is a generic object pointer that points to the head of the DOM tree. It is defined in domAPI.h be a
void pointer. A concrete DOM implemention would define the actual structure. The default DOM implementation in
domAPI.c defines a mapping to the libxml2 DOM implementation.

Procedure for Calling a Generated C Encode Function
The encode function generated for an XSD global element definition is the normal entry point for encoding an XML
document. The general procedure for calling a global element encode function is as follows:

1. Prepare a context variable for encoding

2. Initialize an encode message buffer or stream to receive the encoded XML data

3. Populate the data variable with data to be encoded

Generated C Encode/Decode Functions

85

4. Call the appropriate compiler-generated encode function to encode the message

5. If a message buffer was used, get the start pointer and length of the encoded message

Before a C XML encode function can be called; the user must initialize a context variable. This is a variable of type
OSCTXT. This variable holds all of the working data used during the encoding of a message. The context variable is
declared as a normal automatic variable within the top-level calling function. It must be initialized before use. This
can be accomplished by using the rtXmlInitContext function:

 OSCTXT ctxt;/* context variable */
 if (rtXmlInitContext (&ctxt) != 0) {
 /* initialization failed, could be a license problem */
 printf ("context initialization failed (check license)\n");
 return -1;
 }

The next step is to specify an encode buffer or stream into which the message will be encoded. This is accomplished
by calling the rtXmlSetEncBufPtr run-time function (for a message buffer) or one of the rtxStream functions to create
an output stream. If a message buffer is to be used, the user has the option to either pass the address of a buffer and size
allocated in his or her program (referred to as a static buffer), or set these parameters to zero and let the encode function
manage the buffer memory allocation (referred to as a dynamic buffer). Better performance can normally be attained
by using a static buffer because this eliminates the high-overhead operation of allocating and reallocating memory.

XBinder currently supports encoding in UTF-8, UTF-16 and ISO-8859-1. By default, the enocded XML message is
in UTF-8 encoding. To encode the XML message in UTF-16 or ISO-8859-1 encoding, use the rtXmlSetEncodingStr
run-time function. For example:

 rtXmlSetEncodingStr (&ctxt, (OSUTF8CHAR*)"UTF-16LE");

After initializing the context and populating a variable of the structure to be encoded, an encode function can be called
to encode the message. If the return status indicates success, the run-time library function rtXmlGetEncBufPtr can be
called to obtain the start address of the encoded message. In the static case, this is simply the start address of the static
buffer. In the dynamic case, this function will return the pointer to the allocated memory buffer. The memory allocated
for a dynamic buffer will be freed when either the context is freed (rtxFreeContext) or all memory associated with
the context is released (rtxMemFree) or the buffer memory is explicity released (rtxMemFreePtr).

In the stream case, the pointer to the encoded message generally cannot be obtained since the message has already
been written to the stream. The only thing necessary to do in this case is to close the stream after encoding is complete.
Use the rtxStreamClose function which should be called before the rtxFreeContext function.

A program fragment that could be used to encode an employee record is as follows:

 #include "employee.h"

 #define MAXMSGLEN 1024

 int main (int argc, char** argv)
 {
 PersonnelRecord employee;
 OSCTXT ctxt;
 OSOCTET msgbuf[MAXMSGLEN];
 int i, stat;

Generated C Encode/Decode Functions

86

 const char* filename = "message.xml";

 /* Init context */

 stat = rtXmlInitContext (&ctxt);
 if (0 != stat) {
 printf ("Context initialization failed.\n");
 rtxErrPrint (&ctxt);
 return stat;
 }

 /* Populate structure of generated type */

 Init_PersonnelRecord (&ctxt, &employee);

 ... logic to populate structure here ...

 /* Encode */

 stat = rtXmlSetEncBufPtr (&ctxt, msgbuf, sizeof(msgbuf));

 if (0 == stat)
 stat = XmlE_personnelRecord (&ctxt, &employee);

 if (0 == stat) {
 printf ("encoded XML message:\n");
 printf (msgbuf);
 printf ("\n");
 }
 else {
 printf ("Encoding failed\n");
 rtxErrPrint (&ctxt);
 return stat;
 }

 ... logic to process encoded message (write to file, etc.) ...

 rtxFreeContext (&ctxt);

This example used a static message buffer. The encoded XML text will reside in the msgbuf message buffer when
the procedure complete.

A program fragment that could be used to encode an employee record to a file stream is as follows:

 #include "rtxsrc/rtxStreamFile.h"
 #include "employee.h"

 int main (int argc, char** argv)
 {
 PersonnelRecord employee;
 OSCTXT ctxt;
 int stat;
 const char* filename = "message.xml";

Generated C Encode/Decode Functions

87

 /* Init context */

 stat = rtXmlInitContext (&ctxt);
 if (0 != stat) {
 printf ("Context initialization failed.\n");
 rtxErrPrint (&ctxt);
 return stat;
 }

 /* Populate structure of generated type */

 Init_PersonnelRecord (&ctxt, &employee);

 ... logic to populate structure here ...

 /* Encode directly to output stream */

 stat = rtxStreamFileCreateWriter (&ctxt, filename);
 if (0 != stat) {
 printf ("Stream initialization failed.\n");
 rtxErrPrint (&ctxt);
 return stat;
 }

 stat = XmlE_personnelRecord (&ctxt, &employee);

 if (0 != stat) {
 printf ("Encoding failed\n");
 rtxErrPrint (&ctxt);
 return stat;
 }
 rtxStreamClose (&ctxt);
 rtxFreeContext (&ctxt);
 return 0;
 }

Generated XML Decode Functions
Two different types of XML decode functions may be generated using XBinder:

1. Pull-parser based. These use a custom pull-parser run-time for decoding.

2. SAX based. These provide a standard interface to third party SAX-based XML parsers.

Pull-Parser Based Decode Functions
An XML pull-parser works by allowing a user to "pull" selected events from an XML stream as it is parsed. This differs
from the SAX model which is sometimes referred to as a "push" parser because event callbacks are executed (pushed)
as the stream is parsed. The pull model offers significant advantages for a data binding type application because it is
easier to maintain state between operations. This results in less required code to do the decoding which in turn leads
to improved performance. It is also conceptually easier to understand because the function call model more closely
approximates the model used for encoding.

Generated C Encode/Decode Functions

88

Generated C Function Format for XSD Types

Generated C pull-parser decode functions are written to a .c file with a name of the following format:

 <xsdFileName>Dec.c or
 <wsdlFileName>WSDLDec.c

where <xsdFileName> is the base name of the XSD file being parsed; and <wsdlFileName> is the base name of the
WSDL file being parsed. For example, if code is being generated for file x.xsd, decode functions for each type and
global element defined in the specification will be written to xDec.c . If the file being processed is a WSDL file, the
suffix would be WSDLDec.c (for example, x.wsdl would produce xWSDLDec.c).

The format of the name of each generated XML decode function is as follows:

 [<ns>]XmlDT_<typeName>

where <typeName>is the name of the C type for which the function is being generated and <ns>is an optional
namespace setting that can be used to disambiguate element names from multiple sources (note: this should not be
confused with XML namespaces which are different).

The calling sequence for each decode function is as follows:

 stat = <decodeFunc> (OSCTXT* pctxt, <typeName>* pvalue);

In this definition, <decodeFunc> denotes the decode function name defined above.

The pctxtargument is used to hold a context pointer to keep track of decode parameters. This is a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user is required to supply a pointer to a variable of this type declared somewhere in his or her program.

The p valueargument is a pointer to a variable of the decode function type to receive the decoded data.

The function result variable statreturns the status of the decode operation. Status code 0 (zero) indicates the function
was successful. A negative value indicates decoding failed. Return status values are defined in the rtxErrCodes.h
include file. The error text and a stack trace can be displayed using the rtxErrPrint function.

A key difference between SAX-based functions and pull-parser based is that a decode function is not generated for
all types in the SAX case. That is because of the overhead invlolved in setting up the SAX parser to decode simple
types. Most simple types are decoded inline as part of more complex types. This is an example of a case where the
pull-parser model more closely follows the encode model.

Generated C Function Format for XSD Global Elements

The generated C function format for global elements is identical to that of the SAX case:

 [<ns>]XmlD_<elemName>

The calling arguments are also the same:

 stat = <decodeFunc> (OSCTXT* pctxt, <typeName>* pvalue);

This allows pull-parser or SAX-based decoding to be interchanged with minimal code changes.

Generated C Encode/Decode Functions

89

The procedure for calling this type of decode function is described below in the section entitled "Procedure for Calling
C Decode Functions". The procedure for calling pull-parser based functions is the same as was the case for SAX-
based functions.

Generated C Function Format for Project Level Factory Function

The generated C factory decode function format is similar to that of the global element decode function:

 [<ns>]XmlD_Project_<prjName>

The calling arguments are :

 stat = <decodeFunc> (OSCTXT* pctxt, <prjName>_message*
pvalue);

The procedure for calling this factory decode function is described below in the section entitled "Procedure for Calling
C Decode Functions".

Generated C Decode Functions for WSDL Operations

Web service description language (WSDL) documents may contain operation definitions in portType and binding
sections. A decode function is generated for each operation input and output in the following format:

 [<ns>]XmlD_<operName>_Input
 [<ns>]XmlD_<operName>_Output

where <operName>is the name of the WSDL operation name and <ns>is an optional namespace setting that can be
used to disambiguate element names from multiple sources (note: this should not be confused with XML namespaces
which are different). Note: if there are duplicate operation names in one WSDL source file, the first operation uses
only the operation name, and other operation(s) with the duplicate names use a fully qualified name which is consist
of operation name, input name and output name.

When Request-response primitives are used, the calling sequence for a WSDL input operation decode function is as
follows:

 status = <decodeFunc> (OSCTXT* pctxt, <name>* pvalue);

The calling sequence for a WSDL output operation decode function is as follows:

 status = <decodeFunc> (OSCTXT* pctxt, <name>* pvalue,
 <fault name>* pfault);

In this definition, <decodeFunc> denotes the decode function name defined above. The pctxtargument is used to
hold a context pointer to keep track of decode parameters. This is a basic "handle" variable that is used to make the
function reentrant so it can be used in an asynchronous or threaded application. The user is required to supply a pointer
to a variable of this type declared somewhere in his or her program.

The pvalue argument is a pointer to a variable of the decode function type (either operation input or output) to receive
the decoded input/output data. The pfault argument is a pointer to a variable of the operation fault type to receive the
decoded SOAP Fault data.

Generated C Encode/Decode Functions

90

The WSDL output operation decode function is used to decode a response from a Web Service server. If the response
is a SOAP Fault message, the returned value status is RTERR_SOAPFAULT, and the decoded data is saved in pfault
. If the response is a normal SOAP message, the returned status value is zero and the decoded data is saved in pvalue
. A negative return value indicates decoding failed. Return status values are defined in the rtxErrCodes.h include file.
The error text and a stack trace can be displayed using the rtxErrPrint function.

SAX Based Decode Functions
If -sax is specified on the XBinder command-line or selected in the GUI, SAX-based decode functions are generated.
The code generated in this case uses off-the-shelf XML parser software to parse the XML documents to be decoded.
This software contains a common interface known as the Simple API for XML (or SAX) that is a de-facto standard
that is supported by many parsers. XBinder generates an implementation of the content handler interface defined by
this standard. This implementation receives the parsed XML data and uses it to populate the structures generated by
the compiler.

The default XML parser used is the GNOME LibXML2 parser (http://xmlsoft.org). This is a fullfeatured, open-source
parser that was implemented in C. XBinder generates C SAX handler functions that are called from the SAX interface of
this framework to decode XML data into the generated typed data structures. The interface was designed to be generic
so that other XML parsers could be easily substituted. An interface to the EXPAT parser (http://www.expat.org) is
also available as well as an interface to a custom micro-parser for memory constrained applications. Interfacing to
other parsers requires only building an abstraction layer to map the common interface to the vendor's interface. See
the SAX Parser Interface section below for more details.

XBinder generates code to implement the following functions defined in the SAX content handler interface:

 startElement

 characters

 endElement

The interface defines other methods that can be implemented as well, but these are sufficient to decode XML encoded
data.

Generated C Function Format and Calling Parameters

Generated decode functions are written to a .c file with a name of the following format:

 <xsdFileName>Dec.c

where <xsdFileName> is the base name of the XSD file being parsed. For example, if code is being generated for
file x.xsd, decode functions for each global element defined in the specification will be written to xDec.c . In addition,
the SAX handler functions that are invoked by the underlying XML parser software are written to a file with a name
of the following format:

 <xsdFileName>SAX.c

The format of the name of each generated C XML decode function is as follows:

 [<ns>]XmlD_<elemName

Generated C Encode/Decode Functions

91

where <elemName>is the name of the XSD global element for which the function is being generated and <ns>is an
optional namespace setting that can be used to disambiguate element names from multiple sources (note: this should
not be confused with XML namespaces which are different).

The calling sequence for each decode function (except WSDL output operation deocde function) is as follows:

 status = <decodeFunc> (OSCTXT* pctxt, <typeName>*
pvalue);

In this definition, <decodeFunc> is the name of the decode function described above and <typeName> is the name of
the generated C type definition for the global element.

The pctxtargument is used to hold a context pointer to keep track of decode parameters. This is a basic "handle"
variable that is used to make the function reentrant so that it can be used in an asynchronous or threaded application.
The user is required to supply a pointer to a variable of this type declared somewhere in his or her program. The
variable must be initialized using the rtXmlInitContext run-time function before use.

The pvalueargument is a pointer to a variable to hold the decoded result. This variable is of the type generated for
the XSD type of the global element. The decode function will automatically allocate dynamic memory for variable
length fields within the structure. This memory is tracked within the context structure and is released when the context
structure is freed.

The function result variable statusreturns the status of the decode operation. Status code zero indicates the function
was successful. A negative value indicates decoding failed. Return status values are defined in the "rtxErrCodes.h"
include file. The reason text and a stack trace can be displayed using the rtxErrPrint function.

The calling sequence for a WSDL output operation decode function is as follows:

 status = <decodeFunc> (OSCTXT* pctxt, <name>* pvalue,
 <fault name>* pfault);

In this definition, <decodeFunc> denotes the decode function name defined above. The pctxtargument is used to
hold a context pointer to keep track of decode parameters. This is a basic "handle" variable that is used to make the
function reentrant so it can be used in an asynchronous or threaded application. The user is required to supply a pointer
to a variable of this type declared somewhere in his or her program.

The pvalue argument is a pointer to a variable of the decode function type (operation output) to receive the decoded
output data.

A negative return value indicates decoding failed. Return status values are defined in the rtxErrCodes.h include file.
The error text and a stack trace can be displayed using the rtxErrPrint function.

The WSDL output operation decode function is used to decode a response from a Web Service server. If the response
is an SOAP Fault message, the returned status value is RTERR_SOAPFAULT, and the decoded data is saved in pfault.
The pfault argument is a pointer to a variable of the operation fault type to receive the decoded SOAP Fault data.

If the response is a normal SOAP message without Fault, the returned status value is zero and the decoded data is
saved in pvalue .

SAX Parser Interface

Third-party SAX parsers are configured to work with XBinder through interface source files. Pre-built interface source
files for Expat, LibXML2, and a micro-SAX parser that was developed in-house are available in the XBinder distrib-
ution package. The source files for these respective parsers are as follows:

Generated C Encode/Decode Functions

92

 rtXmlExpatIF.c
 rtXmlLibxml2IF.c
 rtXmlMicroIF.c

These files implement the following functions which are required to interface a third-party SAX parser with XBinder:

rtSaxCStartElementHandler - this is the start element adapter function. It receives a SAX start element callback using
the parser's native arguments and converts the arguments into the XBinder common format and then invokes the
XBinder startElement callback.

rtSaxCEndElementHandler - this is the endelement adapter function. It receives a SAX end element callback using the
parser's native arguments and converts the arguments into the XBinder common format and then invokes the XBinder
endElement callback.

rtSaxCCharacterDataHandler - this is the characters adapter function. It receives a SAX characters callback using the
parser's native arguments and converts the arguments into the XBinder common format and then invokes the XBinder
characters callback.

rtSaxCParse - this is a wrapper function for the third-party SAX handler's parse function. This can be as simple as
directly calling the function itself. In the XBinder built-in case, the functions are more complicated because they
support reading a stream of multiple documents.

In the case of the micro parser, the full implementation is contained within the rtXmlMicroIF.c file. This parser is
designed for applications that require a small footprint to operate. It is a bare-boned XML parser that does not support
many of the well-formedness and validity checks of the other parsers. If documents to be parsed are known to be good,
this can be a viable alternative to make an application smaller.

The parameters required to compile against and link with a given parser implementation can be found in the
xmlparser.mk file in the C subdirectory of the installation. Files for various operating system, parser type combinations
are identified by special extensions on the files (for example, xmlparser.gnu_expat is the interface file for Expat on
GNU systems such as Linux). All that generally needs to be done to interface with a specific parser is to rename the
file to xmlparser.mk .

DOM Interface

Decoders can be generated that can decode from a W3C Document Object Model (DOM) structure into XBinder
generated structures. This is accomplished by adding the -dom switch to the command-line instead of -sax and -xml .
The generated global element decode functions in this case would be of the following format:

 [ns]XmlDec_<elemName>_fromDOM (OSCTXT* pctxt,
 OSRTDOMDocPtr doc, <typeName>* pvalue);

The pctxt argument is the standard context argument as defined in other function definitions. The doc argument is the
pointer to the main document root node of a DOM structure. This is abstract and is defined in domAPI.h to be a void
pointer. It is assumed that the user has a DOM implementation defined that contains a concrete representation of this
type. The pvalue argument is a pointer to a structure of the generated element type to receive the decoded data.

Procedure for Calling C Decode Functions
There are four steps to calling a compiler-generated C XML decode function:

1. Prepare a context variable for decoding;

Generated C Encode/Decode Functions

93

2. Open a stream;

3. Call the appropriate compiler-generated decode function to decode the message;

4. Free the context after use of the decoded data is complete to free allocated memory structures

Before a C XML decode function can be called; the user must initialize a context variable. This is a variable of type
OSCTXT. This variable holds all of the working data used during the decoding of a message. The context variable is
declared as a normal automatic variable within the top-level calling function. It must be initialized before use. This
can be accomplished by using the rtXmlInitContext function:

 OSCTXT ctxt; // context variable

 if (rtXmlInitContext (&ctxt) != 0) {
 /* initialization failed, could be a license problem */
 printf ("context initialization failed (check license)\n");
 return -1;
 }

The next step is to create a stream object within the context. This object is an abstraction of the input device from
which the XML data will be read and parsed. Calling one of the following functions initializes the stream:

• rtxStreamFileOpen

• rtxStreamFileAttach

• rtxStreamSocketAttach

• rtxStreamMemoryCreate

• rtxStreamMemoryAttach

The flags parameter of these functions should be set to the OSRTSTRMF_INPUT constant value to indicate an input
stream is being created.

A decode function can then be called to decode the message. If the return status indicates success (0), then the message
will have been decoded into the given XSD type variable. The decode function may automatically allocate dynamic
memory to hold variable length items during the course of decoding. This memory will be tracked in the context
structure, so the programmer does not need to worry about freeing it. It will be released when the context is freed.

The final step of the procedure is to close the stream and free the context block. The function to close the stream is
rtxStreamClose . The function to free the context is rtxFreeContext .

A program fragment that could be used to decode an employee record is as follows:

 #include employee.h /* include file generated by XBinder */

 main ()

 {
 int stat;
 OSCTXT ctxt;
 PersonnelRecord employee;
 const char* filename = "message.xml";

Generated C Encode/Decode Functions

94

 /* Step 1: Init context structure */

 if (rtXmlInitContext (&ctxt) != 0) return -1;

 Init_PersonnelRecord (&ctxt, &employee);

 /* Step 2: Open a stream */

 stat = rtxStreamFileOpen (&ctxt, filename, OSRTSTRMF_INPUT);
 if (stat != 0) {
 rtxErrPrint (&ctxt);
 return -1;
 }

 /* Step 3: decode the record */

 stat = XmlD_personnelRecord (&ctxt, &employee);
 if (stat == 0) {
 if (trace) {
 printf ("Decode of PersonnelRecord was successful\n");
 printf ("Decoded record:\n");
 Print_PersonnelRecord ("Employee", &employee);
 }
 }
 else {
 printf ("decode of PersonnelRecord failed\n");
 rtxErrPrint (&ctxt);
 rtxStreamClose (&ctxt);
 return -1;
 }

 /* Step 4: Close the stream and free the context. */

 rtxStreamClose (&ctxt);
 rtxFreeContext (&ctxt);

 return 0;
 }

When calling a C XML decode function for WSDL operation output, the user must initialize a fault variable. This is
a variable of type Oper_Fault, where Oper is the operation name.

The following code snippet could be used to decode an Add operation output for example CalcWSDL:

 Add_Fault fault;
 ...
 stat = Init_Add_Fault (&ctxt, &fault);
 if (0 != stat) {
 printf ("fault initialization failed\n");
 return stat;
 }
 ...
 /* Decode */

Generated C Encode/Decode Functions

95

 stat = XmlD_Add_Output (&ctxt, &response, &fault);

 if (stat == 0) {
 printf ("Decode of response message was successful\n");
 Print_Add_Output("response", &response);
 }
 else if (stat == RTERR_SOAPFAULT) {
 printf ("Decode of fault message was successful\n");
 Print_Add_Fault("fault", &fault);
 }
 else {
 printf ("decode failed\n");
 rtxErrPrint (&ctxt);
 return stat;
 }

Generated Validation Functions
The -valid or -genvalid option causes validation functions to be generated. These functions can be used to validate a
given XML instance against the compiled schema type. They are similar to decode functions in that either the pull-
parser or generated SAX handlers are used to parse an XML instance. The handlers in this case do not fully decode
the instance; instead, they just check that the instance satisifies all of the constraints specified in the schema.

The generated validation functions are written to a .c file with a name of the following format:

 <xsdFileName>Vldt.c

where <xsdFileName> is the base name of the XSD file being parsed. For example, if code is being generated for file
x.xsd and -valid is specified, validation functions will be written to xVldt.c . If the file being processed is a WSDL file,
the suffix would be WSDLVldt.c (for example, x.wsdl would produce xWSDLVldt.c).

The format of the name of each generated validation function is as follows:

 [<ns>]XmlV_<elemName>

where <elemName>is the name of the XSD global element for which the function is being generated and <ns>is
an optional namespace setting that can be used to disambiguate names from multiple sources (note: this should not
be confused with XML namespaces which are different). Note that validation functions are only generated for global
elements, not types.

When the -genFactory option is also specified, factory validation function is generated. The format of the generated
factory validation function is as follows:

 [<ns>]XmlV_Project_<prjName>

where <prjName>is the name of the project for which the function is being generated and <ns>is an optional name-
space setting.

The calling sequence for each generated test function is as follows:

 OSBOOL result = <validationFunc> (OSCTXT* pctxt);

Generated C Encode/Decode Functions

96

In this definition, <validationFunc> denotes the formatted function name defined above.

The pctxtargument is used to hold a context pointer to keep track of dynamic memory allocation parameters. This is a
basic "handle" variable that is used to make the function reentrant so that it can be used in an asynchronous or threaded
application. The user is required to supply a pointer to a variable of this type declared somewhere in his or her program.
The variable must be initialized using either the rtxInitContext or rtXmlInitContext run-time function before use.

The result function return code is a boolean variable indicating whether the message is valid or not. If the message
is not valid, reasons for failure will be stored on the error list within the context. The rtxErr functions can be used to
examine this list (see the XBinder C/C++ Run-time Reference Manual for details). The simplest way to access this
information is to call rtxErrPrint which will print details on all errors to stderr.

Procedure for Calling C Validation Functions
There are three steps to calling a compiler-generated C XML validation function:

1. Prepare a context variable for decoding/validation;

2. Open a stream;

3. Call the appropriate compiler-generated validation function to validate the message;

Before a C XML validation function can be called; the user must initialize a context variable. This is a variable of type
OSCTXT. This variable holds all of the working data used during the decoding of a message. The context variable is
declared as a normal automatic variable within the top-level calling function. It must be initialized before use. This
can be accomplished by using the rtXmlInitContext function:

 OSCTXT ctxt; // context variable

 if (rtXmlInitContext (&ctxt) != 0) {
 /* initialization failed, could be a license problem */
 printf ("context initialization failed (check license)\n");
 return -1;
 }

The next step is to create a stream object within the context. This object is an abstraction of the input device from
which the XML data will be read and parsed. Calling one of the following functions initializes the stream:

• rtxStreamFileOpen

• rtxStreamFileAttach

• rtxStreamSocketAttach

• rtxStreamMemoryCreate

• rtxStreamMemoryAttach

The flags parameter of these functions should be set to the OSRTSTRMF_INPUT constant value to indicate an input
stream is being created.

A validation function can then be called to validate the message. If the boolean return code is true, then the message
is valid; otherwise, one or more validation errors occurred. The validation errors are stored in the error list within the
context. The rtxErr run-time functions can be used to process the error list. The simplest way to get validation error
information is to call rtxErrPrint which will print information on all of the errors to stderr.

Generated C Encode/Decode Functions

97

The final step of the procedure is to close the stream and free the context block. The function to close the stream is
rtxStreamClose . The function to free the context is rtxFreeContext .

A program fragment that could be used to validate an employee record is as follows:

 #include employee.h /* include file generated by XBinder */

 main ()
 {
 int stat;
 OSCTXT ctxt;
 OSBOOL valid;
 const char* filename = "message.xml";

 /* Step 1: Init context structure */

 if (rtXmlInitContext (&ctxt) != 0) return -1;

 /* Step 2: Open a stream */

 stat = rtxStreamFileOpen (&ctxt, filename, OSRTSTRMF_INPUT);
 if (stat != 0) {
 rtxErrPrint (&ctxt);
 return -1;
 }

 /* Step 3: validate the record */

 valid = XmlV_personnelRecord (&ctxt);
 if (valid) {
 if (trace) {
 printf ("PersonnelRecord is valid\n");
 }
 }
 else {
 printf ("PersonnelRecord is not valid\n");
 rtxErrPrint (&ctxt);
 rtxStreamClose (&ctxt);
 return -1;
 }

 /* Close the stream and free the context. */

 rtxStreamClose (&ctxt);
 rtxFreeContext (&ctxt);

 return 0;
 }

Generated Print Functions
The -print option causes print functions to be generated. These functions can be used to print the contents of variables
of generated types.

Generated C Encode/Decode Functions

98

The generated print functions are written to a .c file with a name of the following format:

 <xsdFileName>Print.c

where <xsdFileName> is the base name of the XSD file being parsed. For example, if code is being generated for file
x.xsd and -print is specified, print functions will be written to xPrint.c . If the file being processed is a WSDL file, the
suffix would be WSDLPrint.c (for example, x.wsdl would produce xWSDLPrint.c).

The format of the name of each generated print function is as follows:

 [<ns>]Print_<typeName>

where <typeName>is the name of the XSD type for which the function is being generated and <ns>is an optional
namespace setting that can be used to disambiguate names from multiple sources (note: this should not be confused
with XML namespaces which are different). Note that print routines are generated for each type within a specification
making it possible to print the contents of any typed variable (some generated functions are only generated for global
elements).

The calling sequence for each generated print function is as follows:

 <printFunc> (const char* name, <typeName>* pvalue)

In this definition, <printFunc> denotes the formatted function name defined above.

The name argument is used to hold the top-level name of the variable being printed. It is typically set to the same
name as the pvalue argument in quotes (for example, to print an employee record, a call to 'Print_PersonnelRecord
("employee", &employee) might be used).

The pvalue argument is used to pass a pointer to a variable of the item to be printed.

The code snippet in the section entitled Procedure for Calling C Decode Functions contains an example of calling a
generated print function. If a successful status is returned from calling the decode function, the contents of the decoded
variable are printed:

 stat = XmlD_personnelRecord (&ctxt, &employee);
 if (stat == 0) {
 if (trace) {
 printf ("Decode of PersonnelRecord was successful\n");
 printf ("Decoded record:\n");

Print_PersonnelRecord ("employee",
&employee);
 }
 }

Generated Test Functions
The -genTest option causes test functions to be generated. These functions can be used to populate variables of gen-
erated types with random test data or data from an existing XML instance. They have two main purposes:

1. To allow testing of the application code with a wide-variety of test data, and

Generated C Encode/Decode Functions

99

2. To provide a code template for users to use to write code to populate variables

The second item is quite useful to users because generated data types can become very complex as the schemas become
more complex. It is sometimes difficult to figure out how to navigate all of the lists and pointers. Using -genTest can
provide code that may be modified to accomplish the population of a data variable with any type of data.

The generated test functions are written to a .c file with a name of the following format:

 <xsdFileName>Test.c

where <xsdFileName> is the base name of the XSD file being parsed. For example, if code is being generated for file
x.xsd and -test is specified, test functions will be written to xTest.c . If the file being processed is a WSDL file, the
suffix would be WSDLTest.c (for example, x.wsdl would produce xWSDLTest.c).

The format of the name of each generated test function is as follows:

 [<ns>]Test_<elemName>

where <elemName>is the name of the XSD global element for which the function is being generated and <ns>is
an optional namespace setting that can be used to disambiguate names from multiple sources (note: this should not be
confused with XML namespaces which are different). Note that test routines are generated only for global elements
within a specification.

The calling sequence for each generated test function is as follows:

 <typeName>* pvalue = <testFunc> (OSCTXT* pctxt)

In this definition, <testFunc> denotes the formatted function name defined above.

The pctxtargument is used to hold a context pointer to keep track of dynamic memory allocation parameters. This is a
basic "handle" variable that is used to make the function reentrant so that it can be used in an asynchronous or threaded
application. The user is required to supply a pointer to a variable of this type declared somewhere in his or her program.
The variable must be initialized using either the rtxInitContext or rtXmlInitContext run-time function before use.

The pvalueargument is a pointer to hold the populated data variable. This variable is of the type generated for the
XSD type of the global element. The test function will automatically allocate dynamic memory using the run-time
memory management for the main variable as well as variable length fields within the structure. This memory is
tracked within the context structure and is released when the context structure is freed.

Generated Identity Constraint Test Functions
When option -genKeyTest is specified, XBinder generates xsd:key related identity constraint test functions for global
elements. These functions are used to validate the structure of data to ensure it is compliant with xsd:key, xsd:keyref,
and xsd:unique constraints defined within the schema. These functions may be called prior to encoding a document
or after decoding to validate constraint compliance. Calls to these functions are also added to generated reader/writer/
rwtest code if this option is specified.

The generated key test functions are written to a .c file with a name of the following format:

 <xsdFileName>KeyTest.c

where <xsdFileName> is the base name of the XSD file being parsed. For example, if code is being generated for file
x.xsd and -genKeyTest is specified, test functions will be written to xKeyTest.c .

Generated C Encode/Decode Functions

100

The format of the name of each generated key test function is as follows:

 [<ns>]XmlKeyTest_<elemName>

where <elemName>is the name of the XSD global element for which the function is being generated and <ns>is
an optional namespace setting that can be used to disambiguate names from multiple sources (note: this should not
be confused with XML namespaces which are different). Note that key test routines are generated only for global
elements within a specification.

The calling sequence for each generated test function is as follows:

 int stat = <keyTestFunc> (OSCTXT* pctxt, <typeName>*
pvalue)

In this definition, <keyTestFunc> denotes the formatted function name defined above.

The pctxtargument is used to hold a context pointer to keep track of dynamic memory allocation parameters. This is a
basic "handle" variable that is used to make the function reentrant so that it can be used in an asynchronous or threaded
application. The user is required to supply a pointer to a variable of this type declared somewhere in his or her program.
The variable must be initialized using either the rtxInitContext or rtXmlInitContext run-time function before use.

The pvalueargument is a pointer to a populated global element data structure. This variable is of the type generated
for the XSD global element. The key test function checks identity constraints on the data within the structure. In
encoding, it should be called after the structure is populated, and before the calling of encode function; in decoding,
it should be called after decode function.

Note: if a data structure is filled with randomly-generated test data (with the -genTest option), it will most likely fail
validation. This is because the identity constraints are not taken into consideration when generating test data.

The key test function returns 0 status if validation is successful. The following error codes will be returned when
validation fails:

 XML_E_KEYNOTFOU - matching keyref constraints not present in array
 XML_E_DUPLKEY - key or unique constraint has duplicate key
 XML_E_FLDABSENT - incomplete key from key constraint, some field is
absent
 XML_E_DUPLFLD - key has duplicate field

Note: the identity constraint test functions are currently generated for C only.

Generated Reader and Writer Programs
Another capability that is related to -genTest is the capability to generate sample reader and writer programs. These
can act as guides or templates in developing more advanced applications.

The -genReader option causes a reader program (reader.c) to be generated. This program will read data from a file
containing an XML document and decode the document into a corresponding data structure. The data structure to be
used will either be chosen randomly from the provided schema file, or the -usepdu option may be used to select the
global element to be used.

The -genWriter option causes a writer program (writer.c) to be generated. The global element to be used as the basis
for this program can be selected using -usepud option as was done for the reader above. If -genTest was specified
at the same time as -genWriter, a section will be added to the writer to populate a data structure with test data for

Generated C Encode/Decode Functions

101

encoding. If -genTest was not specified, a "TODO" section is added to the writer to allow the user to add their own
code to populate a variable of the type to be encoded.

The -genRWTest option causes a read/write program to be generated. This reads in a document of a given XML schema
type (as above, this may be specified using -usepdu), decodes it, and then reencodes iand writes the document back
out. This can be useful for doing transformations on a document such as automatically changing the values of certain
fields. It is also useful for round-trip testing.

The -zip options can be used in conjunction with -genReader and -genWriter switches to produce programs that will
read and write documents in compressed form. Also, -c14n can be used to produce a writer program that will output
an XML document in canonical form.

Generated WSDL SOAP Stub Functions
When -genStubs option is specified, SOAP Stub functions are generated. Those functions send a request to a server,
wait for a response and decode it. Those functions are written to a .h and a .c files. The format of the names of those
files are as follows:

 <wsdlFileName>WSDLSoapClientStubs.h
 <wsdlFileName>WSDLSoapClientStubs.c

The format of a generated SOAP Stub function name is as follows:

 XmlSoap_[<ns>]<wsdl operation name>

where <wsdl operation name>is the name of the WSDL Operation for which the function is being generated
and <ns>is an optional namespace setting that can be used to disambiguate names from multiple sources (note: this
should not be confused with XML namespaces which are different).

The calling sequence for each generated SOAP Stub function is as follows:

 XmlSoap_[<ns>]<wsdl operation name> (OSSOAPCONN* pConn,
 <wsdl input operation type>* preq, OSOCTET**
presp);

The pConnargument is a pointer to a SOAP connection structure. The preqargument is a pointer to a variable of the
wsdl input operation type. The preq contains the information to be sent to the server. The presp argument is a pointer
to a variable which holds the response message returned from the server.

Generated WSDL SOAP Skeleton Server and
Client Programs
A capability that is related to -genTest is the capability to generate skeleton server and sample client programs. These
can act as guides or templates in developing more advanced web service server and client programs.

The -genSkel option causes a skeleton server program (server.c) to be generated. This option must be used with option
-genTest. The skeleton server receives a request message, populates response message with test data, and sends the
response message back to the client. A stub (empty) function is generated for each WSDL operation. These functions
should be supplied by the Web Service developers. In the generated server code, some comments are put in place for
calling of the these functions.

Generated C Encode/Decode Functions

102

The -genClientoption causes a sample client program (client.c) to be generated. This option must be used with
option -genTest. The sample client program populates a request messasge with test data, sends to the server, and waits
to receive the response message.

Generated SSL Stub Functions
When -genSSLStubs option is specified, secure HTTP stub functions are generated. Those functions are using
OpenSSL. They send a request to a server over SSL, wait for a response. Those functions are written to a .h and a .c
files. The format of the names of those files are as follows:

 <wsdlFileName>WSDLSSLClientStubs.h
 <wsdlFileName>WSDLSSLClientStubs.c

The format of a generated SSL Stub function name is as follows:

 XmlSSL_[<ns>]<wsdl operation name>

where <wsdl operation name>is the name of the WSDL Operation for which the function is being generated
and <ns>is an optional namespace setting that can be used to disambiguate names from multiple sources (note: this
should not be confused with XML namespaces which are different).

The calling sequence for each generated SOAP Stub function is as follows:

 XmlSSL_[<ns>]<wsdl operation name> (OSCTXT* pctxt,
 [<ns>]<wsdl input operation type>* pOperIn,
 OSOCTET** pResponseMsg, char* http_hdr);

The pctxtargument is a pointer to a context structure which contains a pointer to an SSL structure. The pOperIn
argument is a pointer to a variable of the wsdl input operation type. The pOperIn contains the information to be sent
to the server. The pResponseMsg argument is a pointer to a variable which holds the response message returned from
the server.

Generated SSL Client Programs
The -genSSLClient option causes a SSL client program (sslClient.c) to be generated. This option must be used with
option -genTest. Note: this assumes OpenSSL is in place on the target platform. The sample client program opens a
TCP connection to port 443 on server. The server hostname is provided by option -hostname of the client program,
and the port number can be changed using -port option of the client. The client then initiates the SSL handshake over
the TCP connection; and sends HTTP request over SSL. The sample client program can act as guides or templates in
developing more advanced SSL client program.

Other Generated Functions
In addition to the functions described above, the following other types of functions are generated as part of the code
generation process:

• Initialization functions

• Memory free functions

• Utility functions based on data type

Generated C Encode/Decode Functions

103

All of these common functions are applicable to both encode and decode operations and, as such, are written to the
common base .c file. The format of the name of this file is as follows:

 <xsdFileName>.c

where <xsdFileName> is the base name of the XSD file being parsed. For example, if code is being generated for file
x.xsd and -test is specified, then the common functions will be written to x.c .

Initialization Functions
Initialization functions are for initializing a variable of a generated data type before use. This includes setting all fields
that contain default or fixed values to the value specified in the schema. All other fields are set to zero. The format
of an initialization function name is as follows:

 [<ns>]Init_<typeName>

where <typeName>is the name of the XSD type for which the function is being generated and <ns>is an optional
namespace setting that can be used to disambiguate names from multiple sources (note: this should not be confused
with XML namespaces which are different).

The calling sequence for each generated initialization function is as follows:

 <initFunc> (OSCTXT* pctxt, <typeName>* pvalue)

In this definition, <initFunc> denotes the formatted function name defined above.

The pctxtargument is used to hold a context pointer to keep track of global parameters. The pvalueargument is
a pointer to a variable of the type to be initialized.

Memory Free Functions
Memory free functions allow memory associated with a specific typed variable instance to be freed. Their use is not
required to free memory - the run-time function rtxMemFree can be called directly with a context variable to free all
memory associated with a context. There are applications, however, where freeing the memory contents of a specific
variable are desirable.

Memory free functions are not generated for all types - only those that contain fields that use dynamic memory. This
includes types that contain elements or attributes that reference other types that use dynamic memory. The format of
a generated memory free function is as follows:

 [<ns>]Free_<typeName>

where <typeName>is the name of the XSD type for which the function is being generated and <ns>is an optional
namespace setting that can be used to disambiguate names from multiple sources (note: this should not be confused
with XML namespaces which are different).

The calling sequence for each generated memory free function is as follows:

 <freeFunc> (OSCTXT* pctxt, <typeName>* pvalue)

In this definition, <freeFunc> denotes the formatted function name defined above.

Generated C Encode/Decode Functions

104

The pctxtargument is used to hold a context pointer to keep track of global parameters. The pvalueargument is a
pointer to a variable of the type containing the memory to be freed.

Helper Functions
Other utility or "helper" functions are type specific and designed to help the user work with the generated code. The
following utility function are generated for the following types:

• Enumerated: <typeName>_toString and <typeName>_toEnum functions are generated to allow conversion from
enumerated to string and vice-versa.

• List or array: repeating fields that result in the generation of an OSRTDList variable contain a <typeName>_Append
function. This is used to append an instance of a typed variable to the list variable.

Generated Makefile
The -genmake option causes a makefile to be generated to assist in the C or C++ compilation of all of the generated
source files. This makefile contains a rule to invoke XBinder to regenerate the .c and .h files if the XSD source file
changes. It also contains rules to compile all of the C or C++ source files. Header file dependencies are generated
for all the source files.

Two basic types of makefiles are generated:

1. A GNU compatible makefile. This makefile is compatible with the GNU make utility which is suitable for compiling
code on Linux and many UNIX operating systems, and

2. A Microsoft Visual Studio compatible makefile. This makefile is compatible with the Microsoft Visual Studio
nmake utility.

A GNU compatible makefile is produced by default, the Microsoft compatible file is produced when the -w32 command
line option is specified in addition to -genmake .

Both of these makefile types rely on definitions in the platform.mk make include file. This file contains parameters
specific to different compiler and linker utilities available on different platforms. Typically, all the needs to be done
to port to a different platform is to adjust the parameters in this file.

Related to -genmake are the -genMakeLib and - genMakeDLL command-line options. -genmake causes a makefile to
be generated that will contain statements to compile the generated code into object files. -genMakeLib adds additional
statements to store the object files in a static library file. -genMakeDLL adds additional statements to link the resulting
objects into a Windows DLL or UNIX shared object file.

When -use-qt is used, the generated makefile will link in Qt libraries. As of this writing, the library names that are
used correspond to Qt 5. If you are using a different version of Qt, you will likely need to adjust the library names
in the makefile.

105

Chapter 8. Generated C++ Class Methods
XBinder generates C++ classes for all types and global elements defined in an XML schema. Each class generated
for a global element contains the main encode or decode methods required to serialize data to and from XML class
member variables. Methods generated for types are used by the global element methods to accomplish the complete
encoding or decoding of an XML document for the given element. Methods are also generated to help users construct
and populate the generated type classes.

The following sections describe procedures for using the XBinder generated C++ framework to encode and decode
XML data.

Preparing C++ Objects for Encoding
Before data can be encoded, an instance of the C++ class for a given data type must be populated. In most cases,
this involves the simple assignment of data items to the elements within the structure and is very similar to the C
case presented earlier. In some cases, however, dynamic memory pointers are involved. It is necessary to know how
dynamic memory works in the run-time in order to populate these fields.

Dynamic Memory Management
In the case of C++, dynamic memory management is handled by the new and delete operators. In most cases, handling
memory involves the common action of making sure to delete any pointer that was allocated with new when done
with it. The C++ memory management policy for XBinder v1.2 and above is to deep-copy all non-atomic variables
on assignment. This differs from earlier versions where an ownMemory flag was used to assign ownership. Now, all
XBinder classes hold their own copy of objects which are automatically deleted on desctruction.

One exception to this rule is for a control class. A flag and a utility method in the control class are used to assign
ownership. When an XML instance is decoded, if a reference to a variable to receive the decoded data has not been
provided, memory will be allocated internally within the class to hold the data. This memory will be freed when the
control class object is deleted or goes out of scope. The exception to this rule is if the user uses the non-const version
of the getValue method to get a pointer to the value. In this case, ownership of the memory is transferred to the user
who is then responsible for freeing it using the delete operator.

An example of a control class is shown below (this is taken from the cpp/sample/Employee sample program):

class EXTERN personnelRecord_CC : public OSXSDGlobalElement {
 protected:
 ::PersonnelRecord * mpValue;
 OSBOOL mbOwnMemory;
 ...
 public:
 ...
 inline ::PersonnelRecord* getValue()
 { setOwnMemory (FALSE); return mpValue; }
 inline const ::PersonnelRecord* getValue() const { return mpValue; }
 ...
 /**
 * This method transfers ownership of the string memory to the
 * class instance. The memory will be deleted when the instance
 * is deleted or goes out of scope.
 *
 * @param bvalue - Boolean value.

Generated C++ Class Methods

106

 */
 inline void setOwnMemory (OSBOOL bvalue=TRUE) { mbOwnMemory=bvalue; }
...
} ;

int personnelRecord_CC::decodeFrom (OSRTMessageBufferIF& msgbuf)
{
 ...
 if (0 == mpValue) {
 mpValue = new ::PersonnelRecord;

 if (mpValue == NULL)
 return LOG_RTERR (pctxt, RTERR_NOMEM);

 setOwnMemory();
 }
 ...
}

An code segment from a reader program that calls non-const version of thegetValue method is shown below:

if (0 == stat) {
 pValue = pdu.getValue();
...
}
...
delete pValue;

The other exception to this rule is the linked-list class append method. In cases where an object list is used, it is assumed
that the user has allocated the object using new and is turning over management of the memory to the list class. This
means that when the list is destroyed, all objects inside are destroyed as well. A second method called appendCopy is
available in generated linked-list based classes that allows a copy of the given object to be made and assigned to the list.

An example of a class with a built-in list and the methods that are generated is shown below (this is taken from the
cpp/sample/simpleArray sample program):

class SimpleArray : public OSRTBaseType {
 public:
 // List of OSXMLStringClass
 class item_list : public OSRTObjListClass {
 public:
 void append (OSXMLStringClass* pdata) {
 OSRTDListClass::append ((const void*)pdata);
 }
 void appendCopy (const OSXMLStringClass* pdata) {
 OSRTDListClass::appendCopy ((void*)pdata);
 }
 const OSXMLStringClass* getItem (int idx) {
 return (const OSXMLStringClass*)
 OSRTDListClass::getItem (idx);
 }
 } item;
 ...

Generated C++ Class Methods

107

In this case, the item list is a list of strings. The append method directly assigned the given pointer variable to the list.
The appendCopy method first makes a copy of the item and then assigned it to the list. When the list is deleted, all
of the objects in the list are deleted as well.

When an XML instance is decoded, the decoder automatically transfers memory ownership to the container objects.
It is therefore not necessary for the user to worry about freeing memory for any of the items within a returned class
instance. Deleting the main object is all that is necessary to free the memory of all of the items within.

Populating Generated Class Instances for Encoding
Prior to calling a compiler generated encode function, an instance of the class generated by the compiler must be
populated. All member variables within the generated classes are declared to be public, it is therefore possible to do
direct assignments to populate the variables. Sometimes the variables are more complicated, however, and special
assignment methods are generated to assist the use in populating the variables. These special cases are described below.

Atomic Simple Types

Atomic simple types include boolean, integer, double, decimal, and types derived from these base types. The classes
generated for these types include a value member that can be assigned to directly. They also include a parameterized
constructor that allows assignment through construction and an assignment operator that makes it possible to do as-
signment directly through the ‘=’ sign without having to use the value member. This makes assignment compatible
with the C case.

For example, the following simple integer type declaration:

 <xsd:simpleType name="EmployeeNumber">
 <xsd:restriction base="xsd:integer"/>
 </xsd:simpleType>

causes a class with the following constructors and assignment operator to be generated:

 class EmployeeNumber : public OSRTBaseType {
 public:
 OSINT32 value;
 EmployeeNumber ();
 EmployeeNumber (OSINT32 value);
 EmployeeNumber& operator= (OSINT32 value);

This makes it possible to assign an employee number in any of the following ways:

 EmployeeNumber empno (33);

or

 EmployeeNumber empno;
 empno.value = 33;

or

 EmployeeNumber empno;
 empno = 33;

Character String Types

Character string types are derived from the built-in base class OSXMLStringClass. This class is in turn derived from
the OSXMLSTRING C struct type which contains a value member character pointer variable.

Generated C++ Class Methods

108

An example of the constructors and assignment operators generated for a character string type is shown for the fol-
lowing definition:

 <xsd:simpleType name="Date">
 <xsd:restriction base="xsd:string"/>
 </xsd:simpleType>

The C++ constructors and assignment operators generated for this definition are as follows:

class EXTERN Date : public OSXMLStringClass {
 public:
 Date ();
 Date (const OSUTF8CHAR* value);
 Date (const char* value);
 Date& operator= (const OSUTF8CHAR* value);
 Date& operator= (const char* value);

Note that constructors and operators are available that allow strings to be specified as either standard C character
strings or as UTF-8 strings.

Assignment of strings always causes a deep-copy of the character data to be done.

Enumerated Type

Classes generated for enumerated types contain setValue methods1 that allow the contained value member variable to
be set. Two overloaded forms of this method are present: one that takes the enumerated identifier and one that takes a
string representation of the value. A method is also generated to allow the value to be retrieved as a number (getValue)
or as a string (toString).

The signatures for these methods is as follows:

normal with -noenumvars

 inline Enum getValue () const { return value; }
 int setValue (Enum enumval);
 int setValue (const OSUTF8CHAR* strval);
 const OSUTF8CHAR* toString () const;

 inline OSUINT16 getValue () const { return value; }
 int setValue (OSUINT16 enumval);
 int setValue (const OSUTF8CHAR* strval);
 const OSUTF8CHAR* toString () const;

Binary String Types

Binary string are used to represent XSD hexBinary and base64Binary data types. A dynamic binary string type (i.e.
one that is not constrained by a length facet) is derived from the OSDynOctStrClass base class. This class allows value
assignment through constructors and copyValue and setValue methods.

The constructors allow a binary string to be specified using data pointer and number of octets arguments. The copyValue
method is used to make a copy of the given string and assign it to the class. The setValue method also makes a deep-
copy of the given data string.

Content Group Types

Classes generated for <xsd:sequence> or <xsd:all> complex types contain a series of public element declarations for
each of the elements in the declaration. These are populated using either direct assignment or the methods available in
the element type classes. If atomic types are used for elements, the primitive type itself is used in the generated class,

1The method signatures have changed in version 2.2.2 See the discussion of Enumerated Types for more information.

Generated C++ Class Methods

109

not a class derived from the type. For example, if a sequence contains an element declared to be an <xsd:integer>, the
OSINT32 type is used for the member variable.

Classes generated for the <xsd:choice> complex type will contain methods to get, set, or query each of the choice
selection elements. The format of these methods is get_<name>, set_<name>, or is_<name> where <name> would
be replaced with the actual element name as defined in the schema.

Content model groups that repeat (i.e. have a maxOccurs facet with a value greater than one) cause a class to be gen-
erated that is derived from the OSRTObjListClass base class. This class contains append and appendCopy methods
for adding elements to the list. An example of what these methods look like is given in the ‘Dynamic Memory Man-
agement’ section above. This method allows memory ownership for the object being added to the list to be tranferred
to the list object. Note that this can be done on a per-element basis making it possible to mix and match dynamic and
static element declarations in a given list.

Message Buffer or Stream Classes

Message buffer or stream classes are used to describe the source from which a message is being decoded or the target
to which a message is being encoded. The base interface for these classes is OSRTMessageBufferIF. Classes for
message buffers or streams specific to encoding or decoding and for different encoding rules (for example, XML) are
derived from this base class. An instance of one of these derived classes along with an instance of the class generated
for a particular XSD type are needed to encode or decode a message.

Message buffers for encoding can be either static or dynamic. A static buffer is simply a byte array in memory. It is
generally the better performing case because no dynamic memory allocations are required. However, the user must
know in advance the amount of memory that will be required to hold an encoded message. There is no fixed formula
to determine this number. XML encoding involves the additions of tags and attributes and other decorations to the
provided data that will increase the size beyond the initial size of the populated data structures. The way to find out is
either by trial-and-error (an error will be signaled if the provided buffer is not large enough) or by using a very large
buffer in comparison to the size of the data. A static buffer is described using a message buffer class object by passing
the byte array address and size to the constructor.

A dynamic buffer is specified by using the default constructor. This tells the encoder that it is to allocate memory for
the message. It does this by allocating an initial amount of memory and when this is used up, it expands the buffer by
reallocating. This can be an expensive operation in terms of performance, especially if a large number of reallocations
are required. Special methods are provided that allow the initial and incremental allocation sizes to be tuned for better
performance. See the runtime class reference guide for further details on this.

In either case, after a message is encoded, it is necessary to get the start address and length of the message. In the static
buffer case for XML, the start address of the message is simply the start address of the buffer. But in the dynamic case,
a function call is required to get the start address of the message after encoding is complete. The getMsgPtr method
is provided for this purpose.

Generated XML C++ Encode Methods
An XML C++ encode method named encodeXML is added to each class generated for an XSD type when the -xml
switch is specified on the command line. This method will convert a populated instance of the class into an encoded
XML message.

Generated Method Format and Calling Parameters
Generated encode method implementations are written to a .cpp file with a name of the following format:

 <xsdFileName>Enc.cpp

Generated C++ Class Methods

110

where <xsdFileName> is the base name of the XSD file being parsed. For example, if code is being generated for file
x.xsd, encode method implementations for each type and global element defined in the specification will be written to
xEnc.cpp. If the file being processed is a WSDL file, the suffix would be WSDLEnc.cpp (for example, x.wsdl would
produce xWSDLEnc.cpp).

The format of the name of each generated XML encode method is encodeXML. The calling sequence is as follows:

 status = <object>.encodeXML
 (OSRTMessageBufferIF& msgbuf, const OSUTF8CHAR* elemName,
 const OSUTF8CHAR* nsPrefix);

In this definition, <object> denotes an object instance of the generated class.

The msgbuf argument is used to hold a reference to the message buffer or stream to which the message is being encoded.

The elemName argument is used to pass an XML element name for the type. This name is what is included in the
<name> </name> brackets used to delimit an XML item. If a null pointer (0) is passed in for this argument, then no
name wrapper is added to encoded XML item.

The nsPrefix argument is used to specify a namespace prefix. If this value is null or empty, no prefix is added to
element name. If a prefix is given, a qualified element name of the form nsPrefix:elemName is generated.

The method result variable returns the status of the encode operation. Status code 0 (zero) indicates success. A negative
value indicates encoding failed. Return status values are defined in the rtxErrCodes.h include file. The error text and
a stack trace can be displayed using the message buffer printErrorInfo method.

Generated C++ Encode Methods for Global Elements
For each global element defined within an XSD specification, a control class definition is generated. Within this control
class are encode methods that can be used to generate a complete XML document. This is the typical entry point an
application program would use to serialize elements into XML.

There are two different encode methods that can be used. There is a method named encode that is defined in the
OSXSDGlobalElement base class. This method encodes the data in the class instance into the default message buffer
or stream that was associated with the control class when it was created. The second method is encodeTo which allows
a message buffer or stream to be specified as an argument. The data in the associated class instance is serialized out
to this buffer or stream.

Generated C++ Encode Methods for WSDL Operations
Web service description language (WSDL) documents may contain operation definitions in portType and binding sec-
tions. Similar to the encode methods generated for global elements, an encode method is generated for each operation
input , output or fault (optional).

Procedure for Using the Generated C++ Encode Method
NOTE: As of version 1.1, C++ exceptions are no longer used. Therefore, any application programs that used
only try/catch blocks to detect errors will not work properly. The return status code from the encode method
is the only mechanism used to report error conditions.

The procedure to encode an XML message using the generated C++ encode method is as follows:

1. Create an instance of the generated type class to hold the data to be encoded.

2. Create an instance of an output stream or message buffer object to which the encoded XML message will be written.

Generated C++ Class Methods

111

3. Create an instance of the generated global element control class to link the generated type class instance with the
message buffer or stream instance.

4. Populate the generated type class instance created in step 2 with data to be encoded.

5. Invoke the control class encode method.

6. If encoding was successful (indicated by return status equal to zero), the start-of-message pointer can be obtained
by calling the message buffer getMsgPtr method (note: this assumes encoding using a message buffer was done; if
a stream was used, the message has already been written to the target).

7. If encoding failed, the message buffer or stream printErrorInfo method can be invoked to print the reason for failure.

A program fragment that uses this procedure to encode an employee record is as follows:

 #include "rtxmlsrc/rtXmlCppMsgBuf.h"
 #include "employee.h"

 int main (int argc, char** argv)
 {
 int i, stat;
 const char* filename = "message.xml";
 OSBOOL trace = TRUE, verbose = FALSE;
 const OSOCTET* msgptr;

 // Create buffer and control objects

 PersonnelRecord value;
 OSXMLEncodeBuffer buffer;
 personnelRecord_CC pdu (buffer, value);

 if (verbose)
 rtxSetDiag (pdu.getCtxtPtr(), 1);

 // Populate structure of generated type

 ... logic to populate structure here ...

 // Encode

 stat = pdu.encode();

 if (0 == stat) {
 if (trace) {
 msgptr = buffer.getMsgPtr();
 printf ("encoded XML message:\n");
 printf ((const char*)msgptr);
 printf ("\n");
 }
 }

 else {
 printf ("Encoding failed\n");
 buffer.printErrorInfo();
 return stat;

Generated C++ Class Methods

112

 }

 // Write the encoded message out to the output file

 buffer.write (filename);

Generated XML C++ Decode Methods
As of XBinder v1.2, two different types of XML C++ decode methods are generated:

1. Pull-parser based. This uses a custom pull-parser run-time for decoding.

2. SAX based. These provide a standard interface to third party SAX-based XML parsers.

Pull-Parser Based Decode Methods
An XML pull-parser works by allowing a user to “pull” selected events from an XML stream as it is parsed. This differs
from the SAX model which is sometimes referred to as a “push” parser because event callbacks are executed (pushed)
as the stream is parsed. The pull model offers significant advantages for a data binding type application because it is
easier to maintain state between operations. This results in less required code to do the decoding which in turn leads
to improved performance. It is also conceptually easier to understand because the function call model more closely
approximates the model used for encoding.

Generated C++ Method

Format for XSD Types Implementations of C++ pull-parser based decode methods are written to a .cpp file with a
name of the following format:

 <xsdFileName>Dec.cpp

where <xsdFileName> is the base name of the XSD file being parsed. For example, if code is being generated for
file x.xsd, decode methods for each type and global element defined in the specification will be written to xDec.cpp.
If the file being processed is a WSDL file, the suffix would be WSDLDec.cpp (for example, x.wsdl would produce
xWSDLDec.cpp).

The format of the name of each generated XML decode method is decodeXML. The calling sequence is as follows:

 stat = <object>.decodeXML (OSCTXT* pctxt);

In this definition, <object> denotes an object instance of the generated class.

The pctxt argument is the underlying context to the decode message buffer or stream object. It can be obtained by
calling the getCtxtPtr method.

The function result variable stat returns the status of the decode operation. Status code 0 (zero) indicates the function
was successful. A negative value indicates decoding failed. Return status values are defined in the rtxErrCodes.h
include file. The error text and a stack trace can be displayed using the rtxErrPrint function.

A key difference between SAX-based functions and pull-parser based is that a decode function is not generated for
all types in the SAX case. That is because of the overhead invlolved in setting up the SAX parser to decode simple
types. Most simple types are decoded inline as part of more complex types. This is an example of a case where the
pull-parser model more closely follows the encode model.

Generated C++ Method Format for XSD Global Elements

Generated C++ Class Methods

113

The generated C++ decode method for global elements is the same as for the SAX case described below. The decode or
decodeFrom that are added to the generated control class are the entry points for decoding complete XML documents
in either the pull-parser or SAX case.

Generated C++ Method Format for Factory Class

The generated C++ decode method for factory class is similar to that for global elements. The decode method is the
entry points for decoding complete XML documents.

Generated C++ Method Format for WSDL Operations

The generated C++ decode method for global elements is the same as for the SAX case described below. The decode or
decodeFrom that are added to the generated control class are the entry points for decoding complete XML documents
in either the pull-parser or SAX case.

SAX Based Decode Methods
If -sax is specified on the XBinder command-line, the code generated to decode XML messages uses off-the-shelf
XML parser software to parse the XML documents to be decoded. This software contains a common interface known
as the Simple API for XML (or SAX) that is a de-facto standard that is supported by most parsers. XBinder generates
an implementation of the content handler interface defined by this standard. This implementation receives the parsed
XML data and uses it to populate the structures generated by the compiler.

The default XML parser used is the GNOME LibXML2 parser (http://xmlsoft.org). This is a full-featured, open-source
parser that was implemented in C. XBinder generates C++ SAX handler classes within the generated type class for
a given XML schema type. The methods within these classes are called from the SAX interface of the XML parser
framework to decode XML data into the generated typed data structures. The interface was designed to be generic so
that other XML parsers could be easily substituted.

In addition to LibXML2, interfaces to the following other C/C++ XML parsers are also available:

1. EXPAT parser (http://www.expat.org)

2. XERCES C++ parser (http://apache.org)

3. A custom micro-SAX parser. This is a bare-boned XML parser targeted at small footprint applications.

Interfacing to other parsers requires building an abstraction layer to map the common interface to the vendor’s interface.

XBinder generates code to implement the following SAX content handler methods:

 startElement

 characters

 endElement

The interface defines other methods that can be implemented as well, but these are sufficient to decode XML encoded
data.

Generated C++ Method Format and Calling Parameters
Generated decode and SAX method implementations are written to a .cpp file with a name of the following format:

 <xsdFileName>Dec.cpp

Generated C++ Class Methods

114

where <xsdFileName> is the base name of the XSD file being parsed. For example, if code is being generated for file
x.xsd, decode functions for each global element defined in the specification will be written to xDec.cpp. If the file being
processed is a WSDL file, the suffix would be WSDLDec.cpp (for example, x.wsdl would produce xWSDLDec.cpp).

The main method for decoding an XML document that corresponds to an XSD global element is the decode or de-
codeFrom methods. The decode method exists in the OSXSDGlobalElement base class as decodes a message from the
message buffer or stream associated with the class to the XSD type object instance. A decodeFrom method is generated
for each global element that is not referenced by any other types. This method takes as an argument a message buffer
of stream reference. The method reads the XML message from this buffer or stream and decodes it into the XSD type
object instance associated with the control class instance.

Procedure for Calling C++ Decode Methods
NOTE: As of version 1.1, C++ exceptions are no longer used. Therefore, any application programs that used
only try/catch blocks to detect errors will not work properly. The return status code from the decode method
is the only mechanism used to report error conditions.

The procedure to invoke a C++ decode method is as follows:

1. Create an instance of the generated type class into which the XML message data is to be decoded.

2. Create an instance of an input stream or message buffer object from which the XML message to be decoded will
be read.

3. Create an instance of the generated global element control class to link the generated type class instance with the
message buffer or input stream instance.

4. Invoke the control class decode method.

5. If decoding was successful (indicated by return status equal to zero), the decoded data will now be available for
use in the generated type variable. The generated print method can be called at this time to examine the contents
of the data structure.

6. If decoding failed, the message buffer or stream printErrorInfo method can be invoked to print the reason for failure.

A program fragment that could be used to decode an employee record is as follows:

 #include "employee.h"
 #include "rtxmlsrc/rtXmlCppMsgBuf.h"

 int main (int argc, char** argv)
 {
 int i, stat;
 const char* filename = "message.xml";
 OSBOOL trace = TRUE, verbose = FALSE;

 // Step 1: create instance of class into which message will be decoded

 PersonnelRecord value;

 // Step 2: create an input stream from which the message will be read

 OSFileInputStream in (filename);
 OSXMLDecodeBuffer decodeBuffer (in);

Generated C++ Class Methods

115

 // Step 3: create a control class instance to tie the data object
 // and input stream object together.

 personnelRecord_CC personnelRecord (decodeBuffer, value);

 if (verbose)
 rtxSetDiag (personnelRecord.getCtxtPtr(), 1);

 // Step 4: Decode

 stat = personnelRecord.decode();

 if (0 == stat) {
 if (trace) {
 printf ("decoded XML message:\n");
 personnelRecord.print ("personnelRecord");
 printf ("\n");
 }
 }
 else {
 printf ("Decoding failed\n");
 decodeBuffer.printErrorInfo();
 }

 return stat;
 }

The calling procedure on WSDL input operation decode method is the same as that on XSD glabal element deocde
method. When calling a C++ XML decode method for WSDL operation output, the user must initialize a fault variable.
This is a variable of type Oper_Fault, where Oper is the operation name.

The following code snippet could be used to decode an Add operation output for example CalcWSDL:

 Add_Output value;
 Add_Fault fault;
 ...
 Add_Output_CC pdu (decodeBuffer, value, fault);
 decodeBuffer.setDiag (verbose);

 // Decode
 in.reset ();
 decodeBuffer.resetErrorInfo ();
 stat = pdu.decodeFrom(decodeBuffer);

 if (0 == stat) {
 if (trace) {
 printf ("decoded XML message:\n");
 pdu.print ("Add_Output");
 printf ("\n");
 }
 }
 else if (RTERR_SOAPFAULT == stat) {
 if (trace) {
 printf ("decoded XML message:\n");

Generated C++ Class Methods

116

 fault.print ("Add_Fault");
 printf ("\n");
 }
 }
 else {
 printf ("Decoding failed\n");
 decodeBuffer.printErrorInfo();
 return stat;
 }

Generated XML C++ Validation Methods
The code generated to validate XML messages is similar to that for decoding in that either the custom pull-parser or
off-the-shelf XML parser software is used. See the previous section on generated decode methods for a description of
the parsers. Special SAX handlers that are used by these parsers are generated to do the validation processing.

Generated C++ Method Format and Calling Parameters
Generated validation and SAX method implementations are written to a .cpp file with a name of the following format:

 <xsdFileName>Vldt.cpp

where <xsdFileName> is the base name of the XSD file being parsed. For example, if code is being generated for file
x.xsd, validation methods for each global element defined in the specification will be written to xVldt.cpp. If the file
being processed is a WSDL file, the suffix would be WSDLVldt.c (for example, x.wsdl would produce xWSDLVldt.c).

The main method for validating an XML document that corresponds to an XSD global element is the validate or
validateFrom methods. The validate method exists in the OSXSDGlobalElement base class and validates a message
from the message buffer or stream associated with the class to the XSD type object instance. A validateFrom method
is generated for each global element that is not referenced by any other types. This method takes as an argument a
message buffer of stream reference. The method reads the XML message from this buffer or stream and validates it.

Procedure for Calling C++ Validation Methods
The procedure to invoke a C++ validation method is as follows:

1. Create an instance of an input stream or message buffer object from which the XML message to be validated will
be read.

2. Create an instance of the generated global element control class.

3. Invoke the control class validation method.

4. Validation success is indicated by a zero return status code.

5. If validation failed, the message buffer or stream printErrorInfo method can be invoked to print the reason for the
validation failure.

A program fragment that could be used to validate an employee record is as follows:

 #include "employee.h"
 #include "rtxmlsrc/rtXmlCppMsgBuf.h"

 int main (int argc, char** argv)

Generated C++ Class Methods

117

 {
 int i, stat;
 const char* filename = "message.xml";
 OSBOOL trace = TRUE, verbose = FALSE;

 // Step 1: create instance of global element type class

 PersonnelRecord value;

 // Step 2: create an input stream from which the message will be read

 OSFileInputStream in (filename);
 OSXMLDecodeBuffer decodeBuffer (in);

 // Step 3: create a control class instance to tie the data object
 // and input stream object together.

 personnelRecord_CC personnelRecord (decodeBuffer, value);

 if (verbose)
 rtxSetDiag (personnelRecord.getCtxtPtr(), 1);

 // Step 4: Validate

 stat = personnelRecord.validate();

 if (0 == stat) {
 if (trace) {
 printf ("message is valid\n");
 }
 }
 else {
 printf ("Validation failed\n");
 decodeBuffer.printErrorInfo();
 }

 return stat;
 }

118

Chapter 9. XBinder C Runtime Library
The XBinder C Runtime Library contains low-level functions that are assembled by the XBinder compiler to accom-
plish the encoding and decoding of XML messages. This library also contains common functions for memory man-
agement, stream operations, linked list handling, and character text conversions.

The following libraries make up the XBinder run-time:

• osysrtxml – contains low-level functions to implement the encoding and decoding of standard XML messages for
the various XML schema types.

• osysrtdom - contains low-level functions that implement an abstract (Document Object Model) DOM interface.
These functions are used when a user generates code with the -dom compilation switch. This is expected to be
used with a concrete DOM implementation. XBinder provide a default implementation based on the libxml2 DOM
implementation.

• osysrt – contains common low-level functions for memory management, etc.

There are several variations of the C XML and common run-time library files for Windows. The following table
summarizes what options were used to build each of these variations:

Library Files Description

osysrt_a.lib
osysrtxml_a.lib
osysrtdom_a.lib

Static single-threaded libraries. These were built with the –ML option. These are not
thread-safe. However, they provide the smallest footprint of the different libraries

osysrtxml.lib DLL library. This is used to link with the osysrtxml.dll dynamic link library. This con-
tains all of the function from all of the static libraries described above.

osysrtmt_a.lib
osysrtxmlmt_a.lib
osysrtdommt_a.lib

Static multi-threaded libraries. These libraries were built with the –MT option. They
should be used if your application contains threads and you wish to link with the static
libraries (note: the DLL’s are also thread-safe).

osysrtmd_a.lib
osysrtxmlmd_a.lib
osysrtdommd_a.lib

DLL-ready multi-threaded libraries. These libraries were built with the – MD option.
They allow linking additional object modules in with the runtime modules to produce
larger DLL’s.

For dynamic linking on UNIX/Linux, a shared object version of each run-time library is included in the lib subdirectory.
This file typically has the extension .so (for shared object) or .sl (for shared library). See the documentation for your
UNIX compiler to determine how to link using these files (it varies for different types of UNIX systems).

A version of the libraries is available that contains run-time source code making it possible for the enduser to build
customized versions that are further optimized or that use other non-standard compiler options.

119

Chapter 10. XML Run-time Library
Functions
The XML low-level C encode/decode functions are used to encode and decode an XML instance of an XML schema
typed variable. These functions are identified by their prefixes: rtXmlEnc for encode, rtXmlDec for decode, rtXmlpDec
for pull-parser based decode, rtSax for SAX helper functions, and rtXml for utility functions. The following sections
describe these functions.

XML C Encode Functions
The XML C low-level encode functions handle the XML encoding of simple XML schema data types. Calls to these
functions are assembled in the C source code generated by the XBinder compiler to accomplish the encoding of
complex structures. These functions are also directly callable from within a user's application program if the need to
accomplish a low level encoding function exists.

The procedure to call a low-level encode function is the same as the procedure to call a compiler generated encode
function described earlier. It is as follows:

1. The rtXmlInitContext function must first be called to initialize a context block structure.

2. Either a stream must be set up or a memory buffer specified to receive the encoded message. To set up a stream,
one of the rtxStream functions must be called. To set up a memory buffer, the rtXmlSetEncBufPtr function is used.

3. The rtXmlEncStartDocument function is called to add the standard XML document header to the buffer.

4. Encode functions are then invoked to encode the XML data types.

5. The rtXmlEncEndDocument function is then called to complete the encoding.

If a stream was used, the encoded message will have been written to the output stream. If a memory buffer was used,
the result of the encoding will start at the beginning of the buffer, or, if a dynamic buffer was used, can be obtained by
calling rtXmlGetEncMsgPtr. The length of the encoded component can be obtained by calling the C standard library
strlen function. The encoded stream is a standard UTF-8 null-terminated text string.

For example, the following code fragment could be used to encode a document with a single, boolean value.

 OSOCTET buf[1000];
 OSBOOL boolValue = TRUE; /* true */
 OSCTXT ctxt;
 int msglen, stat;

 rtXmlInitContext (&ctxt);
 rtXmlSetEncBufPtr (&ctxt, buf, sizeof(buf));

 stat = rtXmlEncStartDocument (&ctxt);
 if (stat != 0) {
 rtxErrPrint (&ctxt);
 exit (-1);
 }

 stat = rtXmlEncBool (&ctxt, boolValue, “boolValue”);
 if (stat != 0) {

XML Run-time Library Functions

120

 rtxErrPrint (&ctxt);
 exit (-1);
 }

 stat = rtXmlEncEndDocument (&ctxt);
 if (stat != 0) {
 rtxErrPrint (&ctxt);
 exit (-1);
 }

 msglen = strlen (buf);

The msglen variable now contains the length (in octets) of the encoded boolean value and the encoded data starts at
the beginning of buf.

A complete reference to all of the built-in C XML encode functions is available in the XBinder C/C++ Runtime
Reference Manual.

XML C Pull-Parser Based Decode Functions
XML C pull-parser based decode functions handle the decoding of simple XSD types. Calls to these functions are
assembled in the C source code generated by the XBinder compiler to decode complex XML schema-based messages.
In general, these complement the encoding model in which individual functions exist for each type. This differs from
the SAX-based functions described below which use a different model.

As an example, the code documented above to encode a simple boolean value can be reversed to decode the value:

 OSCTXT ctxt;
 int stat;
 const char* filename = "message.xml";
 OSBOOL value;

 /* Init context structure */

 stat = rtXmlInitContext (&ctxt);
 if (0 != stat) {
 printf ("Context initialization failed.\n");
 rtxErrPrint (&ctxt);
 return stat;
 }

 /* Create input source object */

 stat = rtxStreamFileCreateReader (&ctxt, filename);
 if (0 != stat) {
 printf ("Unable to open file input stream.\n");
 rtxErrPrint (&ctxt);
 return stat;
 }

 /* Match expected start tag */

 stat = rtXmlpMatchStartTag (&ctxt, OSUTF8("boolValue"), -1);
 if (0 != stat) {

XML Run-time Library Functions

121

 printf ("parse initial tag failed\n");
 rtxErrPrint (&ctxt);
 return stat;
 }

 /* Decode boolean value */

 stat = rtXmlpDecBool (&ctxt, &value);
 if (0 != stat) {
 printf ("decode boolean failed\n");
 rtxErrPrint (&ctxt);
 return stat;
 }

 /* Match expected end tag */

 stat = rtXmlpMatchEndTag (&ctxt, 0);
 if (0 != stat) {
 printf ("parse initial tag failed\n");
 rtxErrPrint (&ctxt);
 return stat;
 }

 rtxStreamClose (&ctxt);
 rtxFreeContext (&ctxt);

XML C SAX Based Decode Functions
XML C SAX based low-level decode functions handle the transformation of XML simple type content into C type
program variable data using a SAX interface. Calls to these functions are assembled in the C SAX handler source code
generated by the XBinder compiler to decode complex XML schema-based messages. They are normally invoked from
within a generated SAX endElement function to parse buffered data that was collected in a SAX characters function.

These functions are also directly callable from within a user's application program if the need to decode a primitive
data item exists. Note, however, that the low-level C decode functions only decode the data within XML tagged fields,
not the tags themselves. Thus, it is not possible to directly decode a string such as <myInt>10</myInt> by calling
these functions. It would only be possible to convert “10” into a C integer value. To parse the entire XML string, it
would be necessary to invoke the XML parser with registered SAX handlers that could parse all of the items.

A complete reference to all of the built-in C XML encode functions is available in the XBinder C/C++ Runtime
Reference Manual.

XML C SAX Parser Interface
The XML C SAX Parser Interface functions form the abstraction layer between a third-party XML parser and the
XBinder generated code and C run-time. XBinder uses the SAX parsing capability of these parsers to accomplish
decoding and validation of XML documents. The following sections describe the parser interfaces that are available.

LibXML2
An interface to the Gnome LibXML2 parser library (http://xmlsoft.org) is included. This is the default parser used
for SAX-based decoding. This library contains functionality for DOM, XPath processing, and canonicalization for

XML Run-time Library Functions

122

security processing. The interface to this library is implemented in the rtXmlLibxmlIF.c file. A compiled object file is
included in the lib subdirectory which can be used for linking with the library.

Source code form the libxml2 parser interface can be found in the libxml2src directory in the XBinder distribution.
Libraries in various configurations (single-threaded, multi-threaded, etc.) are built from this code base and are part
of the XBinder run-time libraries.

Expat
Also included in the package is the open source Expat XML parser (http://expat.sourceforge.net). This is a small,
lightweight parser that contains basic SAX parsing functionality. The source file containing the Expat parser interface
is rtXmlExpatIF.c in the rtxmlsrc subdirectory. The full source code and license for this parser can be found in the
expatsrc subdirectory.

To use this library instead of libxml2, the xmlparser.mk file must be modified to include the file paths to the expat
files. A file names xmlparser-expat.mk is included in the distribution that should have all teh correct settings. This file
can simply be renamed to xmlparser.mk to use the Expat parser.

Micro Parser
XBinder includes a micro parser designed for systems where low memory usage is of the greatest importance. This
parser contains basic SAX parsing functionality, but does not catch many well formedness errors in the XML content.
The source file containing the complete Micro Parser interface and implementation is rtXmlMicroIF.c in the rtxmlsrc
subdirectory. To use the Micro Parser, copy the xmlparser-micro.mk file to xmlparser.mk.

XML C DOM Interface
An abstract interface to third party Document Object Model (DOM) implementations is available through the DOM
interface. This is defined in the file domAPI.h in the rtdomsrc subdirectory. A user is required to implement these
functions to interface with the DOM implementation of their choice.

A default implemetation that interfaces to the libxml2 DOM library is available in the domAPI.c file.

The steps required to create your own DOM interface to XBinder generated structures is as follows:

1. Create an implemetation of all run-time functions defined in domAPI.h. Note that the DOM structures in this file are
simply defined as void pointers. This is because the actual definitions of these structures varies between implementa-
tions. Concrete mappings to the structure definitions are defined in the implementation file.

2. Compile your XSD specifications with the -dom command-line option instead of -xml. This will cause functions to
be generated that will call the abstract DOM functions.

3. The makefile will need to be modified to link with your DOM implementation library.

Note that the DOM interface is currently only available for C. A C++ interface is not available at this time.

123

Chapter 11. JSON Run-time Library
Functions
The JSON low-level C encode/decode functions are used to encode and decode a JSON instance of an XML schema
typed variable. These functions are identified by their prefixes: rtJsonEnc for encode, rtJsonDec for decode.

JSON C Encode Functions
The JSON C low-level encode functions handle the JSON encoding of simple XML schema data types. Calls to
these functions are assembled in the C source code generated by the XBinder compiler to accomplish the encoding
of complex structures. These functions are also directly callable from within a user's application program if the need
to accomplish a low level encoding function exists.

The procedure to call a low-level encode function is the same as the procedure to call a compiler generated encode
function described earlier. It is as follows:

1. The rtxInitContext function must first be called to initialize a context block structure.

2. Either a stream must be set up or a memory buffer specified to receive the encoded message. To set up a stream,
one of the rtxStream functions must be called. To set up a memory buffer, the rtxInitContextBuffer function is used.

3. Encode functions are invoked to encode the JSON data types.

If a stream was used, the encoded message will have been written to the output stream. If a memory buffer was used,
the result of the encoding will start at the beginning of the buffer. The encoded stream is a standard UTF-8 null-
terminated text string.

For example, the following code fragment could be used to encode a document with a single, boolean value.

 Boolean data;
 OSCTXT ctxt;
 int i, stat;
 const char* filename = "message.json";

 /* Init context */

 stat = rtxInitContext (&ctxt);
 if (0 != stat) {
 printf ("Context initialization failed.\n");
 rtxErrPrint (&ctxt);
 return stat;
 }

 /* Populate structure of generated type */
 data = TRUE;
 stat = rtxStreamFileCreateWriter (&ctxt, filename);

 if (0 == stat)
 stat = JsonEnc_personnelRecord (&ctxt, data);
 rtxStreamClose (&ctxt);
 if (0 == stat) {
 printf ("encoded message:\n");

JSON Run-time Library Functions

124

 rtxPrintFile (filename);
 printf ("\n");
 }
 else {
 printf ("Encoding failed\n");
 rtxErrPrint (&ctxt);
 }
 }

A complete reference to all of the built-in C JSON encode functions is available in the XBinder C/C++ Runtime
Reference Manual.

JSON C Decode Functions
JSON C decode functions handle the decoding of simple XSD types. Calls to these functions are assembled in the C
source code generated by the XBinder compiler to decode complex XML schema-based messages. In general, these
complement the encoding model in which individual functions exist for each type.

As an example, the code documented above to encode a simple boolean value can be reversed to decode the value:

 Boolean pdu;
 OSCTXT ctxt;
 int i, stat;
 const char* filename = "message.json";

 /* Init context */

 stat = rtxInitContext (&ctxt);
 if (0 != stat) {
 printf ("Context initialization failed.\n");
 rtxErrPrint (&ctxt);
 return stat;
 }

 /* Create input source object */

 stat = rtxStreamFileCreateReader (&ctxt, filename);
 if (0 != stat) {
 printf ("Create file input stream failed.\n");
 rtxErrPrint (&ctxt);
 rtxFreeContext (&ctxt);
 return stat;
 }

 /* Call compiler generated decode function */
 if (stat == 0)
 stat = JsonDec_personnelRecord (&ctxt, &pdu);

 if (stat == 0) {
 printf ("Decode was successful\n");
 printf ("Decoded record:\n");
 Print_Boolean ("Boolean", pdu);
 }
 else {

JSON Run-time Library Functions

125

 printf ("decode failed\n");
 rtxErrPrint (&ctxt);
 }

 rtxStreamClose (&ctxt);
 rtxFreeContext (&ctxt);

A complete reference to all of the built-in C JSON decode functions is available in the XBinder C/C++ Runtime
Reference Manual.

126

Chapter 12. C Common Runtime Library
The C common run-time library contains common functions used by the XML C low-level encode/ decode functions.
These functions could be common to other applications as well. They are identified by their rtx prefixes. The following
general categories of functions are provided:

• Context management functions

• Memory management functions

• Memory buffer management functions

• Diagnostic trace functions

• Error formatting and print functions

• Formatted printing functions

• Linked list utility functions

• Character string conversion utility functions

The following sections describe these functions.

Common Include Files
The common runtime library includes the following common header files:

• osSysTypes.h common type definitions

• rtxCommon.h common function prototypes

• rtxContext.h run-time context (OSCTXT) structure definition

• rtxErrCodes.h error code contants

osSysTypes.h
The osSysTypes.h header file contains all of the simple type definitions for character string data, integers, floating
point types, binary types, etc. The following common type definitions are included:

 typedef void OSVoid;
 typedef void* OSVoidPtr;
 typedef unsigned char OSBOOL;
 typedef signed char OSINT8;
 typedef unsigned char OSUINT8;
 typedef short OSINT16;
 typedef unsigned short OSUINT16;
 typedef int OSINT32;
 typedef unsigned int OSUINT32;
 typedef OSUINT8 OSOCTET;
 typedef OSUINT8 OSUTF8CHAR; /* UTF-8 character */
 typedef OSUINT16 OSUNICHAR; /* Unicode character */
 typedef OSUINT32 OS32BITCHAR;

C Common Runtime Library

127

 typedef double OSREAL;

 /* binary string type */

 typedef struct OSDynOctStr {
 OSUINT32 numocts;
 const OSOCTET* data;
 } OSDynOctStr;

 /* XML string */

 typedef struct OSXMLSTRING {
 OSBOOL cdata; /* encode as a CDATA section */
 const OSUTF8CHAR* value;
 } OSXMLSTRING;

rtxCommon.h
The rtxCommon.h file contains all of the common function prototypes. This file also contains macro definitions for
inline code that is used to improve performance. These macros are used in both the common runtime code and also
added to generated code by the XBinder compiler.

All of the runtime functions defined within this file are documented in the common runtime function sections below.

rtxContext.h
The rtxContext.h file contains the definition of the runtime context block structure – OSCTXT. This structure is used
in practically all runtime function calls. It provides a common work area for the functions to preserve state information
needed in the encoding or decoding of messages.

A brief description of some of the key fields within this structure is as follows:

• buffer – This contains information on the memory buffer to which a message is being encoded or holds an in-
memory copy of a message being decoded. This may also be used as a temporary buffer if stream-based encoding
or decoding is being done. The OSBuffer structure contains a data pointer to the memory buffer itself as well as
the current byte index and bit offset.

• savedInfo – This is used to save a copy of the buffer information in places where an alternate buffer may need to
be substituted. Sometimes it is possible to save the buffer information on the stack, but there are instances where
this variable is needed for that purpose.

• errInfo – This is a stack containing information on errors that were encountered in formatting or parsing a message.
The OSErrInfo type contains a status code, run-time error parameter stack, and an error location stack that is used
to save source file/line number information so that a trace stack can be provided in the error message print routine.

• pMemHeap – This is a pointer to the memory heap managed by the runtime software. This tracks all of the memory
usage used in the encoding or decoding of a specific message. See the section on memory management functions
for more details on this.

• level – This variable contains the current nesting level of the data within the current XML or other message type
that is being encoded or decoded.

• state – This is used to hold the current processing state when parsing an XML message. It is primarily used in SAX
parsing to determine if the last element parsed was a start tag, data, or end tag.

C Common Runtime Library

128

• pStream – This is used to hold information about an input or output stream if data is being directly read from or
written to a stream. See the section on stream handling functions for more details on this.

• pAppInfo – This is reserved for application specific information.

Context Management Functions
Context management functions handle the allocation, initialization, and destruction of context variables (variables
of type OSCTXT). These variables hold all of the working data used during the process of encoding or decoding a
message. The context provides thread safe operation by isolating what would otherwise be global variables within this
structure. The context variable is passed from function to function as a message is encoded or decoded and maintains
state information on the encoding or decoding process.

The main functions in this group that a user should be aware of are the following:

• rtxInitContext - This is the first function that must be called to initialize a context block structure before it can be
used as an argument in subsequent function calls. This function initializes all internal variables within the context
to their start values.

• rtxInitContextBuffer - This function associates a memory buffer with a context. This memory buffer can be used
to as the target for encoding an XML message or as the source to read from for decoding a message.

• rtxFreeContext - This function is used to free all working memory held within the context. All memory allocation
done using memory management functions are tracked within the context. All of this memory can be released at
once by calling this function. It should be the last function called when all work using a particular context variable
is complete.

Other functions exist for doing further operations on contexts including copying and setting data within. A full de-
scription of all context management functions can be found in the XBinder C/C++ Runtime Reference Manual.

Memory Management Functions
The XBinder runtime provides a high level memory management API to handle the allocation and deallocation of
dynamic memory. These functions form an abstraction layer above the standard C memory management functions
malloc, free, and realloc. This block of functions can be replaced by the user with custom code to implement a different
memory management scheme. For example, an embedded system application might want to use a fixed-sized static
block from which to allocate.

The built-in implementation of the high level memory management API implements a nibble-allocation memory man-
agement algorithm that provides superior performance to calling malloc and free directly. This algorithm causes mem-
ory blocks to be allocated up front in larger sizes and then subsequently split up when future allocation requests are
received. These blocks can be reset and reused in applications that are constantly allocating and freeing memory (for
example, a decoder that constantly reads and decodes XML messages in a long running loop).

The nibble-allocation memory management can be tuned by setting the default memory heap block size. The way
memory management works is that a large block of memory is allocated up front on the first memory management call.
This block is then subdivided on subsequent calls until the memory is used up. A new block is then started. The default
value is 4K (4096) bytes. The value can be set lower for space constrained systems and higher to improve performance
in systems that have sufficient memory resources. To set the block size, the following run-time function should be used:

 void rtxMemSetDefBlkSize (OSUINT32 blkSize);

This function must be called prior to context initialization.

C Common Runtime Library

129

High Level Memory Management API
The high-level memory management API consists of C macros and functions called in gemerated code and/or in
application programs to allocate and free memory within the XBinder run-time.

The key memory management functions that a user might use are the following:

• rtxMemAlloc - This function allocates a block of memory in much the same way malloc would. The only difference
from the user’s perspective is that a pointer to a context structure is required as an argument. The allocated memory
is tracked within this context.

• rtxMemFreePtr - This function releases the memory held by a pointer in much the same way the C free function
would. The only difference from a user’s perspective is that a pointer to a context structure is required as an argument.
This context must have been used in the call to rtxMemAlloc at the time the memory was allocated.

• rtxMemFree - This function releases all memory held within a context.

• rtxMemReset - This functions resets all memory held within a context. The difference between this and the rtxMem-
Free function is that this function does not actually free the blocks that were previously allocated. It only resets the
pointers and indexes within those blocks to allow the memory to be reused.

• rtxMemRealloc - This function works in the same way as the C realloc function. It reallocates an existing block of
memory. As in the other cases above, a pointer to a context structure is a required argument.

Note that these memory management functions are only used in the generation of C code, not C++ (although a user
can use them in a C++ application). For C++, the built-in new and delete operators are used to ensure constructors
and destructors are properly executed.

For a full description of these and other memory management functions, see the XBinder C/C++ Runtime Reference
Manual.

It is possible to replace the high-level memory allocation functions with functions that implement a custom memory
management scheme. This is done by implementing some (or all) of the C rtxMemHeap functions defined in the
following interface (note: a default implementation is shown that replaces the XBinder memory manager with direct
calls to the standard C run-time memory management functions):

 #include <stdlib.h>
 #include "rtxMemory.h"

 /* Create a memory heap */
 int rtxMemHeapCreate (void** ppvMemHeap) {
 return 0;
 }

 /* Allocate memory */
 void* rtxMemHeapAlloc (void** ppvMemHeap, int nbytes) {
 return malloc (nbytes);
 }

 /* Allocate and zero memory */
 void* rtxMemHeapAllocZ (void** ppvMemHeap, int nbytes) {
 void* ptr = malloc (nbytes);
 if (0 != ptr) memset (ptr, 0, nbytes);
 return ptr;

C Common Runtime Library

130

 }

 /* Free memory pointer */
 void rtxMemHeapFreePtr (void** ppvMemHeap, void* mem_p) {
 free (mem_p);
 }

 /* Reallocate memory */
 void* rtxMemHeapRealloc (void** ppvMemHeap, void* mem_p, int nbytes_) {
 return realloc (mem_p, nbytes_);
 }

 /* Clears heap memory (frees all memory, reset all heap's variables) */
 void rtxMemHeapFreeAll (void** ppvMemHeap) {
 /* should remove all allocated memory. there is no analog in standard memory
 management. */
 }

 /* Frees all memory and heap structure as well (if was allocated) */
 void rtxMemHeapRelease (void** ppvMemHeap) {
 /* should free all memory allocated + free memory heap object if exists */
 }

In most cases it is only necessary to implement the following functions: rtxMemHeapAlloc, rtxMemHeapAllocZ,
rtxMemHeapFreePtr and rtxMemHeapRealloc. Note that there is no analog in standard memory management for
XBinder's rtxMemFree macro (i.e. the rtxMemHeapFreeAll function). A user would be responsible for freeing all
items in a generated XBinder structure individually if standard memory management is used.

The rtxMemHeapCreate and rtxMemHeapRelease functions are specialized functions used when a special heap is to
be used for allocation (for example, a static block within an embedded system). In this case, rtxMemHeapCreate must
set the ppvMemHeap argument to point at the block of memory to be used. This will then be passed in to all of the
other memory management functions for their use through the OSCTXT structure. The rtxMemHeapRelease function
can then be used to dispose of this memory when it is no longer needed.

To add these definitions to an application program, compile the C source file (it can have any name) and link the
resulting object file (.OBJ or .O) in with the application.

Using the Built-in Compact Memory Management

In the above example, we gave an example of how the high level memory management API could be reimplemented to
make direct calls to the standard C memory functions. This is one way to replace the default nibble memory allocation
algorithm with standard memory allocation. Users who have the runtime source code can easily achieve the same thing
by defining the _MEMCOMPACT C compile time setting. This can be done by either adding -D_MEMCOMPACT to
the C compiler command-line arguments, or by uncommenting this item at the beginning of the rtxMemory.h header
file:

 /*
 * Uncomment this definition before building the C or C++ run-time
 * libraries to enable compact memory management. This will have a
 * smaller code footprint than the standard memory management; however,
 * the performance may not be as good.
 */
 /*#define _MEMCOMPACT*/

C Common Runtime Library

131

The only difference between these two approaches is that with this approach, tracking of allocated memory is done
through the context. This makes it possible to provide an implementation of the rtxMemHeapFreeAll function as
described above. This memory management scheme is slower than the default manager (i.e. nibble-based), but has
a smaller code footprint.

Low Level Memory Management API
It is possible to replace the core memory management functions used by the XBinder run-time memory manager. This
has the advantage of preserving the existing management scheme but with the use of different core functions. Using
different core functions may be necessary on some systems that do not have the standard C run-time functions malloc,
free, and realloc, or when extra functionality is desired.

To replace the core functions, the following run-time library function would be used:

 void rtxMemSetAllocFuncs (OSMallocFunc malloc_func,
 OSReallocFunc realloc_func, OSFreeFunc free_func);

The malloc, realloc, and free functions must have the same prototype as the standard C functions. Some systems do not
have a realloc-like function. In this case, realloc_func may be set to NULL. This will cause the malloc_func/free_func
pair to be used to do reallocations.

This function must be called before the context initialization function (rtInitContext) because context initialization
requires low level memory management facilities be in place in order to do its work.

UTF-8 String Functions
The UTF-8 string functions handle string operations on UTF-8 encoded strings. This is the default character string
data type used for encoded XML data. UTF-8 strings are represented in C as strings of unsigned characters (bytes) to
cover the full range of possible single character encodings.

This group of functions encompasses functions for doing conversions to and from UTF-8 to Unicode as well as standard
string manipuation functions such as exist in the C standard string library.

For a complete list and full description of all of the UTF-8 string functions, see the XBinder C/C++ Runtime Reference
Manual.

Doubly-Linked List Utility Functions
The XBinder compiler will generate a mapping to the OSRTDList type for many kinds of repeating types. This is a
linked list structure type. The doubly-linked list utility functions are common routines for working with linked lists
of this type.

Functions are available to initialize, append, insert, remove, and find elements in lists. Some useful functions in this
group are as follows:

• rtxDListInit - This function is used to initialize a linked list variable. This is first function that should be called
before working with a linked list variable.

• rtxDListAppend - This function is used to append an item to a linked list. The normal procedure for populating a
linked list variable is to first initialize it and then call this function to add items.

• rtxDListInsert - This function is used to insert an item into a specific location within a list.

• rtxDListRemove - This function is used to remove an item from a list.

C Common Runtime Library

132

For a complete list and full description of all of the doubly-linked list functions, see the XBinder C/C++ Runtime
Reference Manual.

Error Formatting and Print Functions
Error formatting and print functions allow information about encode/decode errors to be added to a context block
structure and then printed when the error is propagated to the top level.

The LOG_RTERR macro is inserted in the generated code by the compiler to record the position of an error in the
code and store information on the error in the context structure.

The OSRTASSERT macro can be used to test an assertion in much the same as the standard C assert call. If the
assertion is false, the macro will cause the program to exit and a printout showing the file and line number of failure
along with the failed condition will be shown.

Other key error handling routines for printing error information are as follows:

• rtxErrPrint - This function prints a message to standard output containing the error information recorded in the
context by calls to LOG_RTERR.

• rtxErrLogUsingCB - This function allows information on an error to be logged using a user defined callback
function. It is useful in environments where printing to standard output is not always an option (for example, in a
Windows GUI application or an embedded application).

For a complete list and full description of all of the error formatting and print functions, see the XBinder C/C++
Runtime Reference Manual.

Diagnostic trace functions
These functions add diagnostic tracing to the generated code to assist in finding where a problem might occur. Calls
to these macros and functions are added when the -trace command-line argument is used. The diagnostic message can
be turned on and off at both C compile and run-time. To C compile the diagnostics in, the _TRACE macro must be
defined (-D_TRACE). To turn the diagnostics on at runtime, the rtxSetDiag function must be invoked with the
value argument set to TRUE.

The key functions in this group are as follows:

• rtxSetDiag - This function is used to turn diagnostic tracing on or off at run-time.

• rtxDiagEnabled - This function is used to determine if diagnostic tracing is currently enabled for the specified
context.

• rtxDiagHexDump - This function is used to print a diagnostics hex dump of a section of memory.

• rtxDiagPrint - This function is used to print a diagnostics message to stdout .

For a complete list and full description of all of the diagnostic trace functions, see the XBinder C/C++ Runtime Ref-
erence Manual.

Input/Output Data Stream Utility Functions
This group of functions is used to operate on input or output data streams. The decode functions generated by the
XBinder compiler can read and decode from a stream that was created using these functions. A stream is an abstraction
of some physical input medium such as a file, memory buffer, or socket interface.

C Common Runtime Library

133

The key functions in this group are as follows:

• rtxStreamFileCreateWriter - this function opens a file for write access as an output stream.

• rtxStreamFileCreateReader - this function opens a file for read access as an input stream.

• rtxStreamMemoryCreateWriter - this function opens a memory buffer for write access as an output stream.

• rtxStreamMemoryCreateReader - this function opens a memory buffer (byte array) for read access as an input
stream.

• rtxStreamSocketCreateWriter - this function open a socket for write access as an output stream.

• rtxStreamSocketCreateReader - this function open a socket for read access as an input stream.

• rtxStreamRead -This function reads data from the input stream into a given memory buffer.

• rtxStreamWrite -This function writes data to an output stream.

• rtxStreamFlush -This function flushes the output stream and forces any buffered output octets to be written out.

• rtxStreamClose - This function closes the input or output stream and releases any system resources associated with
the stream. For output streams this function also flushes all internal buffers to the stream.

For a complete list and full description of all of the stream input/output functions, see the XBinder C/ C++ Runtime
Reference Manual.

TCP/IP or UDP socket utility functions
This group of functions allows TCP/IP or UDP sockets to be set up for interprocess communications. These functions
can be used in conjunction with the stream input/output functions described above to allow direct encoding and de-
coding of XML messages to and from socket connections.

The key functions in this group are as follows:

• rtxSocketAccept - This function accepts an incoming connection request on a socket.

• rtxSocketBind - This function associates a local address with a socket.

• rtxSocketConnect -This function establishes a connection on a specified socket.

• rtxSocketCreate - This function creates a new socket.

• rtxSocketListen - This function places a socket in a state where it is listening for an incoming connection.

• rtxSocketRecv -This function receives (reads) data from a connected socket.

• rtxSocketWrite - This function writes data to a socket connection.

For a complete list and full description of all of the stream input/output functions, see the XBinder C/ C++ Runtime
Reference Manual.

SOAP and HTTP utility functions
This group of functions provides basic Simple Object Access Protocol (SOAP) and Hypertext Transfer Protocol
(HTTP) support to allow XML messages created/parsed with XBinder to be exchanged with SOAP endpoints (for
example, with a web-service application).

C Common Runtime Library

134

• rtxSoapInitConn - Initialize a connection structure for use in communicating with a SOAP endpoint.

• rtxSoapConnect - Connect to a SOAP endpoint.

• rtxSoapSendHttp - Send an HTTP request to a SOAP endpoint.

• rtxSoapRecvHttp - Receive a response from a SOAP endpoint.

• rtxSoapRecvHttpContent - Receive HTTP content from a SOAP endpoint.

For a complete list and full description of all of the SOAP functions, see the XBinder C/C++ Runtime Reference
Manual.

135

Chapter 13. C++ Built-in Runtime Classes
C++ runtime classes are the foundation on which generated C++ code is built. Some of these classes such as the
message buffer classes are for direct use in application programs. Others, such as the XSD type base classes, are used
primarily by the XBinder as base classes for generated classes. The general categories of C++ built-in runtime classes
are as follows:

• Context management class

• Message buffer classes

• Global element base class

• XSD type base classes

A cursory description of these classes follows. For a full description, see the XBinder C/C++ Runtime Reference
Manual.

Context Management Class
The context management class (OSRTContext) manages an XBinder context structure used for C function calls. In
general, for C++, this structure is hidden in that it is encapsulated within the message buffer and global element classes.
The user needs to be aware of its existence, however, in cases where a C run-time functions needs to be called from
within a C++ application. In these cases, the message buffer or global context class contains a method called getCtxtPtr
that can be used to retrieve a pointer to the underlying context variable. Note that it does not matter from which class
this method is invoked because the message buffer and global element classes share a common context variable.

The context is shared between the global element and message buffer classes by means of the OSRTCtxtPtr referenced
counted pointer class. This class is used to maintain a reference count on the context so that it remains in scope as long
as either a message buffer or global element class is in scope. A user can invoke the getContext method from either
a message buffer or global element object in order to obtain a reference to this reference counter pointer object. This
would allow them to hold onto the context after all message buffer or global element objects go out of scope should
they have a specialized need to do this (for example, if they were using the C memory management facilities that use
the managed heap that is stored within the context).

Message Buffer Classes
Message buffer classes describe the memory buffers into which XML message are encoded or from which XML
messages are decoded. The main base class for all memory buffer derivations is OSRTMessageBufferIF. This is a pure
virtual class that defines the interface all derived message buffer or stream classes must implement.

The base class for all in-memory message buffers is OSRTMessageBuffer. This too is abstract. It is used as the base for
the OSXMLMessageBuffer class which is the base class for XML message encoding or decoding. From this, concrete
XML encode (OSXMLEncodeBuffer) and decode (OSXMLDecodeBuffer) buffer classes are derived.

To encode an XML message, a user would need to describe the target buffer to which it is to be written. This is
what the OSXMLEncodeBuffer class is used for. The default constructor allows a dynamic buffer to be setup that the
encoder will manage the memory for to ensure there is enough space for a given encode operation to succeed. Another
constructor is available that allows a fixed-sized buffer to be specified by providing the start address and buffer size.
If this buffer is not large enough to hold a given encoded message, a buffer overflow error is returned from the encode
method that is using the buffer.

C++ Built-in Runtime Classes

136

Global Element Base Class
The global element base class - OSXSDGlobalElement - is the base class from which generated XSD global element
control classes are derived. These are the main entry points for encoding or decoding items within an XML schema
specification. The control class derived from this class is typically constructed with a reference to a variable of the
type to be encoded or decoded as well as the associated message buffer. For example, from the C++ employee sample
program writer program is the following snippet of code:

 PersonnelRecord value;
 OSXMLEncodeBuffer buffer;
 personnelRecord_CC pdu (buffer, value);

These three lines of code form the necessary associations to accomplish the encoding of an employee record. The
global element declaration in the employee.xsd file is the following:

 <xsd:element name="personnelRecord" type="PersonnelRecord"/>

This declares the personnelRecord element to be of type PersonnelRecord. The XBinder compiler generates the Per-
sonnelRecord C++ class for the PersonnelRecord XSD type. It also generates the personnelRecord_CC class for the
personnelRecord XSD global element (the _CC suffix is an abbreviation for “control class”). The series of statements
above bind an instance of this generated type class with an encode message buffer to accomplish the encoding of an
instance of the personnelRecord global element.

XSD Type Base Classes
The XSD type base classes are the base classes from which XBinder-generated C++ classes for XSD types are derived.
The main base class from which all XSD type classes are derived is the OSRTBaseType class. Generated classes for
many types are derived directly from this. However, the following intermediate built-in classes are also present from
which generated classes are also derived:

• OSXMLStringClass - This is the base class for XSD string types such as xsd:string, xsd: token, etc.. It is derived
from the OSRTBaseType class. It provides member variables to hold a UTF-8 string value as well as a CDATA
flag to indicate if the string should be encoded as a CDATA section. There is also an OSXMLSTLStringClass which
encapsulates an STL std::string variable. This is used the the -usestl command-line option is used.

• OSDynOctStrClass - This is the base class for the XSD hexBinary and base64Binary string types. It is derived
from the OSRTBaseType class. It provides member variables to hold binary data in native machine format.

• OSRTDListClass - This is the base class for XSD repeating types that use linked lists. It is derived from the
OSRTBaseType class as well as the C OSRTDList structure. It provides methods for adding, retrieving, and removing
items from linked lists.

• OSRTObjListClass - This is the base class for XSD repeating types that hold objects in linked lists. It is similar to
the OSRTDListClass described above except that the base type for items in the list is OSRTBaseType. This allows
items in the list to be properly destructed when memory ownership for the items is transferred to the list object.

• OSXSDDateTimeClass - This is a utility class for operating on XSD date/time formats. It is derived from the
OSRTBaseType class as well as the C OSXSDDateTime structure. Although it is currently not used in any generated
classes (date/time classes are currently represented as strings), the class can be used to format or parse XSD date/
time strings in application programs.

C++ Built-in Runtime Classes

137

XML Parser Interface Classes
XML parser interface classes provide an object-oriented interface to third-party XML parser software that is required to
produce the SAX event stream that XBinder generated code uses to decode and validate XML instances. The following
are the basic classes that define this interface:

• OSXMLContentHandler - This is the base interface class that defines the standard SAX startElement, characters,
and endElement virtual methods.

• OSXMLErrorHandler - This is the base error handling class that is used to report errors in the SAX event stream.
This contains methods for reporting errors at various severity levels including warning, error, and fatalError.

• OSXMLReader - This is the base class for an XML reader implementation. This contains various overloaded
versions of the virtual parse method. This is the entry method that an application calls to begin parsing an XML
document. The rtSaxCppCreateXmlReader global function is a factory function that is used to create a concrete
instance of this class.

• OSXMLDefaultHandlerIF - This class is derived from the OSXMLContentHandler and OSXMLErrorHandler
base classes. It is used as the base class for XBinder generated global element control classes which implement the
standard SAX content handler methods.

138

Appendix A. XBinder Error Codes
This appendix describes all of the status codes that may be returned during program execution in two sections. Runtime
error messages are divided into two sections: the first for general errors that are not specifically related to XML, like
socket read errors or end of buffer messages, and the second for errors related specifically to XML, mismatched tags.

The runtime error messages may be found in the runtime documentation as well. Users may look at rtxs-
rc/rtxErrCodes.h and rtxmlsrc/rtXmlErrCodes.h for up-to-date lists of what may be returned.

General Runtime Error Messages
The following table contains runtime status codes that may occur during program execution. These failures are general
errors, not specifically related to XML.

Error Code Error Name Description

0 RT_OK Normal completion status.

2 RT_OK_FRAG Message fragment return status. This is returned when a
part of a message is successfully decoded. The application
should continue to invoke the decode function until a zero
status is returned.

-1 RTERR_BUFOVFLW Encode buffer overflow. This status code is returned when
encoding into a static buffer and there is no space left for
the item currently being encoded.

-2 RTERR_ENDOFBUF Unexpected end-of-buffer. This status code is returned
when decoding and the decoder expects more data to be
available but instead runs into the end of the decode buffer.

-3 RTERR_IDNOTFOU Expected identifier not found. This status is returned when
the decoder is expecting a certain element to be present at
the current position and instead something different is en-
countered. An example is decoding a sequence container
type in which the declared elements are expected to be in
the given order. If an element is encountered that is not the
one expected, this error is raised.

-4 RTERR_INVENUM Invalid enumerated identifier. This status is returned when
an enumerated value is being encoded or decoded and the
given value is not in the set of values defined in the enu-
meration facet.

-5 RTERR_SETDUPL Duplicate element in set. This status code is returned when
decoding an ASN.1 SET or XSD xsd:all construct. It is
raised if a given element defined in the content model
group occurs multiple times in the instance being decoded.

-6 RTERR_SETMISRQ Missing required element in set. This status code is re-
turned when decoding an ASN.1 SET or XSD xsd:all con-
struct and all required elements in the content model group
are not found to be present in the instance being decoded.

-7 RTERR_NOTINSET Element not in set. This status code is returned when en-
coding or decoding an ASN.1 SET or XSD xsd:all con-
struct. When encoding, it occurs when a value in the gen-
erated _order member variable is outside the range of in-
dexes of items in the content model group. It occurs on

XBinder Error Codes

139

Error Code Error Name Description

the decode side when an element is received that is not
defined in the content model group.

-8 RTERR_SEQOVFLW Sequence overflow. This status code is returned when de-
coding a repeating element (ASN.1 SEQUENCE OF or
XSD element with minmaxOccurs > 1) and more instances
of the element are received the content model group.

-9 RTERR_INVOPT Invalid option in choice. This status code is returned
when encoding or decoding an ASN.1 CHOICE or XSD
xsd:choice construct. When encoding, it occurs when a
value in the generated 't' member variable is outside the
range of indexes of items in the content model group. It
occurs on the decode side when an element is received that
is not defined in the content model group.

-10 RTERR_NOMEM No dynamic memory available. This status code is re-
turned when a dynamic memory allocation request is made
and an insufficient amount of memory is available to sat-
isfy the request.

-11 RTERR_INVHEXS Invalid hexadecimal string. This status code is returned
when decoding a hexadecimal string value and a character
is encountered in the string that is not in the valid hexa-
decimal character set ([0-9A-Fa-f] or whitespace).

-12 RTERR_INVREAL Invalid real number value. This status code is returned
when decoding a numeric floating-point value and an in-
valid character is received (i.e. not numeric, decimal point,
plus or minus sign, or exponent character).

-13 RTERR_STROVFLW String overflow. This status code is returned when a fixed-
sized field is being decoded as specified by a size con-
straint and the item contains more characters or bytes then
this amount. It can occur when a run-time function is
called with a fixed-sixed static buffer and whatever oper-
ation is being done causes the bounds of this buffer to be
exceeded.

-14 RTERR_BADVALUE Bad value. This status code is returned anywhere where
an API is expecting a value to be within a certain range
and it not within this range. An example is the encoding or
decoding date values when the month or day value is not
within the legal range (1-12 for month and 1 to whatever
the max days is for a given month).

-15 RTERR_TOODEEP Nesting level too deep. This status code is returned when a
preconfigured maximum nesting level for elements within
a content model group is exceeded.

-16 RTERR_CONSVIO Constraint violation. This status code is returned when
constraints defined the schema are violated. These include
XSD facets such as minmaxOccurs, minmaxLength, pat-
terns, etc.. Also ASN.1 value range, size, and permitted
alphabet constraints.

-17 RTERR_ENDOFFILE Unexpected end-of-file error. This status code is returned
when an unexpected end-of-file condition is detected on

XBinder Error Codes

140

Error Code Error Name Description

decode. It is similar to the ENDOFBUF error code de-
scribed above except that in this case, decoding is being
done from a file stream instead of from a memory buffer.

-18 RTERR_INVUTF8 Invalid UTF-8 character encoding. This status code is re-
turned by the decoder when an invalid sequence of bytes
is detected in a UTF-8 character string.

-19 RTERR_OUTOFBND Array index out-of-bounds. This status code is returned
when an attempt is made to add something to an array and
the given index is outside the defined bounds of the array.

-20 RTERR_INVPARAM Invalid parameter passed to a function of method. This sta-
tus code is returned by a function or method when it does
an initial check on the values of parameters passed in. If
a parameter is found to not have a value in the expected
range, this error code is returned.

-21 RTERR_INVFORMAT Invalid value format. This status code is returned when a
value is received or passed into a function that is not in
the expected format. For example, the time string parsing
function expects a string in the form "nn:nn:nn" where n's
are numbers. If not in this format, this error code is re-
turned.

-22 RTERR_NOTINIT Context not initialized. This status code is returned when
the run-time context structure (OSCTXT) is attempted to
be used without having been initialized. This can occur if
rtxInitContext is not invoked to initialize a context vari-
able before use in any other API call. It can also occur is
there is a license violation (for example, evaluation license
expired).

-23 RTERR_TOOBIG Value will not fit in target variable. This status is returned
by the decoder when a target variable is not large enough
to hold a a decoded value. A typical case is an integer value
that is too large to fit in the standard C integer type (typ-
ically a 32-bit value) on a given platform. If this occurs,
it is usually necessary to use a configuration file setting
to force the compiler to use a different data type for the
item. For example, for integer, the <isBigInteger> setting
can be used to force use of a big integer type.

-24 RTERR_INVCHAR Invalid character. This status code is returned when a char-
acter is encountered that is not valid for a given data type.
For example, if an integer value is being decoded and a
non-numeric character is encountered, this error will be
raised.

-25 RTERR_XMLSTATE XML state error. This status code is returned when the
XML parser

-26 RTERR_XMLPARSE XML parser error. This status code in returned when the
underlying XML parser application (by default, this is Ex-
pat) returns an error code. The parser error code or text is
returned as a parameter in is not in the correct state to do
a certain operation.

XBinder Error Codes

141

Error Code Error Name Description

-27 RTERR_SEQORDER Sequence order error. This status code is returned when
decoding an ASN.1 SEQUENCE or XSD xsd:sequence
construct. It is raised if the elements were received in
an order different than that specified the errInfo structure
within the context structure.

-28 RTERR_FILNOTFOU File not found. This status code is returned if an attempt
is made to open a file input stream for decoding and the
given file does not exist.

-29 RTERR_READERR Read error. This status code if returned if a read IO error is
encountered when reading from an input stream associated
with a physical device such as a file or socket.

-30 RTERR_WRITEERR Write error. This status code if returned if a write IO error
is encountered when attempting to output data to an output
stream associated with a physical device such as a file or
socket.

-31 RTERR_INVBASE64 Invalid Base64 encoding. This status code is returned
when an error is detected in decoding base64 data.

-32 RTERR_INVSOCKET Invalid socket. This status code is returned when an at-
tempt is made to read or write from a scoket and the given
socket handle is invalid. This may be the result of not hav-
ing established a proper connection before trying to use
the socket handle variable.

-33 RTERR_INVATTR Invalid attribute. This status code is returned by the de-
coder when an attribute is encountered in an XML instance
that was not defined in the XML schema.

-34 RTERR_REGEXP Invalid regular expression. This status code is returned
when a syntax error is detected in a regular expression val-
ue. Details of the syntax error can be obtained by invoking
rtxErrPrint to print the details of the error contained within
the context variable.

-35 RTERR_PATMATCH Pattern match error. This status code is returned by the
decoder when a value in an XML instance does not match
the pattern facet defined in the XML schema. It can also be
returned by numeric encode functions that cannot format a
numeric value to match the pattern specified for that value.

-36 RTERR_ATTRMISRQ Missing required attribute. This status code is returned by
the decoder when an XML instance is missing a required
attribute value as defined in the XML schema.

-37 RTERR_HOSTNOTFOU Host name could not be resolved. This status code is re-
turned from run-time socket functions when they are un-
able to connect to a given host computer.

-38 RTERR_HTTPERR HTTP protocol error. This status code is returned by func-
tions doing HTTP protocol operations such as SOAP func-
tions. It is returned when a protocol error is detected. De-
tails on the specific error can be obtained by calling rtx-
ErrPrint.

XBinder Error Codes

142

Error Code Error Name Description

-39 RTERR_SOAPERR SOAP error. This status code when an error is detected
when tryingto execute a SOAP operation.

-40 RTERR_EXPIRED Evaluation license expired. This error is returned from
evaluation versions of the run-time library when the hard-
coded evaluation period is expired.

-41 RTERR_UNEXPELEM Unexpected element encountered. This status code is re-
turned when an element is encountered in a position where
something else (for example, an attribute) was expected.

-42 RTERR_INVOCCUR Invalid number of occurrences. This status code is re-
turned by the decoder when an XML instance contains a
number of occurrences of a repeating element that is out-
side the bounds (minOccursmaxOccurs) defined for the
element in the XML schema.

-43 RTERR_INVMSGBUF Invalid message buffer has been passed to decode or vali-
date method. This status code is returned by decode or val-
idate method when the used message buffer instance has
type different from OSMessageBufferIF::XMLDecode.

-44 RTERR_DECELEMFAIL Element decode failed. This status code and parameters
are added to the failure status by the decoder to allow the
specific element on which a decode error was detected to
be identified.

-45 RTERR_DECATTRFAIL Attribute decode failed. This status code and parameters
are added to the failure status by the decoder to allow the
specific attribute on which a decode error was detected to
be identified.

-46 RTERR_STRMINUSE Stream in-use. This status code is returned by stream func-
tions when an attempt is made to initialize a stream or cre-
ate a reader or writer when an existing stream is open in
the context. The existing stream must first be closed be-
fore initializaing a stream for a new operation.

-47 RTERR_NULLPTR Null pointer. This status code is returned when a null
pointer is encountered in a place where it is expected that
the pointer value is to be set.

-48 RTERR_FAILED General failure. Low level call returned error.

-49 RTERR_ATTRFIXEDVAL Attribute fixed value mismatch. The attribute contained a
value that was different than the fixed value defined in the
schema for the attribute.

-50 RTERR_MULTIPLE Multiple errors occurred during an encode or decode op-
eration. See the error list within the context structure for
a full list of all errors.

-51 RTERR_NOTYPEINFO This error is returned when decoding a derived type defin-
ition and no information exists as to what type of data is in
the element content. When decoding XML, this normally
means that an xsi:type attribute was not found identifying
the type of content.

XBinder Error Codes

143

Error Code Error Name Description

-52 RTERR_ADDRINUSE Address already in use. This status code is returned when
an attempt is made to bind a socket to an address that is
already in use.

-53 RTERR_CONNRESET Remote connection was reset. This status code is returned
when the connection is reset by the remote host (via ex-
plicit command or a crash).

-54 RTERR_UNREACHABLE Network failure. This status code is returned when the net-
work or host is down or otherwise unreachable.

-55 RTERR_NOCONN Not connected. This status code is returned when an oper-
ation is issued on an unconnected socket.

-56 RTERR_CONNREFUSED Connection refused. This status code is returned when an
attempt to communicate on an open socket is refused by
the host.

-57 RTERR_INVSOCKOPT Invalid option. This status code is returned when an in-
valid option is passed to socket.

-58 RTERR_SOAPFAULT This error is returned when the decoded SOAP envelope
is a fault message.

-59 RTERR_MARKNOTSUP This error is returned when an attempt is made to mark a
stream position on a stream type that does not support it.

-60 RTERR_NOTSUPP Feature is not supported. This status code is returned when
a feature that is currently not supported is encountered.

-61 RTERR_CODESETCONVFAIL This status code is returned when transcoding from one
character set to another one (for example, from UTF-8 to
UTF-16) and a conversion error occurs.

XML-specific Status Messages
The following table describes status messages that may arise during the course of encoding or decoding XML. The
errors below indicate that while the system was able to read the data successfully, it was unable to decode it properly.

Error Code Error Name Description

-200 XML_E_GENERR General error; an error for which no specific error code
has been defined.

-201 XML_E_INVSYMBOL An invalid XML symbol (character) was detected at the
given point in the parse stream.

-202 XML_E_TAGMISMATCH Start/end tag mismatch. The parsed end tag does not match
the start tag that was parsed earlier at this level. Indicates
document is not well-formed.

-203 XML_E_DUPLATTR Duplicate attribute found.

-204 XML_E_BADCHARREF Bad character reference found.

-205 XML_E_INVMODE Invalid mode.

-206 XML_E_UNEXPEOF Unexpected end of file (document).

-207 XML_E_NOMATCH Current tag is not matched to specified one. Informational
code.

XBinder Error Codes

144

Error Code Error Name Description

-208 XML_E_ELEMMISRQ Missing required element. This status code is returned by
the decoder when the decoder knows exactly which ele-
ment is absent.

-209 XML_E_ELEMSMISRQ Missing required elements. This status code is returned by
the decoder when the number of elements decoded for a
given content model group is less then the required num-
ber of elements as specified in the schema.

-210 XML_E_TOOFEWELEMS The number of elements in a repeating collection was less
than the number of elements specified in the XSD minOc-
curs facet for this type or element.

-211 XML_E_UNEXPSTARTTAGUnexpected start tag.

-212 XML_E_UNEXPENDTAG Unexpected end tag.

-213 XML_E_IDNOTFOU Expected identifier not found.

-214 XML_E_INVTYPEINFO Unknown xsi:type.

-215 XML_E_NSURINOTFOU Namespace URI not defined for given prefix. A name-
space URI was not defined using an xmlns attribute for
the given prefix.

-216 XML_E_KEYNOTFOU Keyref constraint has some key that not present in refered
constraint.

-217 XML_E_DUPLKEY Key or unique constraint has duplicated key.

-218 XML_E_FLDABSENT Some key has no full set of fields. It is not valid for key
constraint.

-219 XML_E_DUPLFLD Some key has more than one value for field.

-220 XML_E_NOTEMPTY An element was not empty when expected.

