
Java Encode/Decode API for
3GPP NAS Layer

Add-on and Standalone Kits for ASN1C

The software described in this document is furnished under a license agreement and may be used only in
accordance with the terms of this agreement. This document may be distributed in any form, electronic or
otherwise, provided that it is distributed in its entirety with the copyright and this notice intact. Comments,
suggestions, and inquiries may be sent by electronic mail to <info@obj-sys.com>.

Copyright © 2024 Objective Systems, Inc.

Table of Contents
Introduction ... 1
Methodology ... 1
Contents of the Add-on Package ... 1
Contents of the Standalone Package .. 2
Getting Started ... 3
Licensing .. 3
Using JSON (JER) and XML (XER) Encoding .. 4
Sample Programs ... 4
Encoding Messages ... 4

Encoding 24.301 Messages .. 4
Encoding 24.501 Messages .. 6

Decoding Messages .. 7

1

Introduction
The NAS Encode/Decode API supports encoding and decoding 3GPP Layer 3 messages. These messages are described
in the following 3GPP technical specifications:

• TS 24.007 - Mobile radio interface signaling layer 3; General Aspects

• TS 24.008 - Mobile radio interface Layer 3 specification; Core network protocols; Stage 3

• TS 24.301 - Universal Mobile Telecommunications System (UMTS); LTE; 5G; Non-Access-Stratum (NAS) pro-
tocol for Evolved Packet System (EPS); Stage 3

• TS 24.501 - 5G; Non-Access Stratum (NAS) protocpol for 5G System (5GS); Stage 3

This document explains how to use this API using the add-on package available for the ASN1C Compiler, or the
standalone packages.

Methodology
This API has been developed in the Java programming language, using Objective Systems' ASN1C compiler to
generate the structures and encode/decode functions. In order to be able to generate code for 3GPP specifications
not using ASN.1, we added to ASN1C the ability to parse CSN.1, along with the ability to use configuration di-
rectives and custom code to refine the encoding/decoding of messages and information elements that we approx-
imated using ASN.1 notation. The configuration directives are made effective by using the '-3gl3' command-line
option with ASN1C. Our white paper, "Using ASN.1 to Describe 3GPP Messages" [http://www.obj-sys.com/docs/
UsingASNtoDescribe3GPPMessages.pdf], describes how messages were approximated using ASN.1. (Note that this
paper does not reflect our more recently capability to directly compile CSN.1 notation.)

The end result is an API that consists of Java types similar to what a user would get by compiling a standard ASN.1
specification. The other benefit of this approach is that in addition to encode/decode functions, supporting functions,
such as print, can be generated from the definitions.

Note that one or more ASN.1 modules are associated with each of the above 3GPP specifications. In some of these
modules, PDU ("Protocol Definition Unit") types are defined. These PDU types are used to represent an entire group
of (or possibly all) messages from that module. Common fields are also factored out into the PDU type.

For each module, a separate Java package under com.objsys.nas contains the classes for that module. The Java packages
are given in the following table:

Table 1. Module Packages

com.objsys.nas.TS24008IES Information elements defined in 24.008

com.objsys.nas.TS24301IES Information elements defined in 24.301.

com.objsys.nas.TS24301Msgs Messages and information elements defined in 24.301.
Type PDU is the toplevel type for these messages.

com.objsys.nas.TS24501IES Information elements defined in 24.501.

com.objsys.nas.TS24501Msgs Messages and information elements defined in 24.501.
Type PDU is the toplevel type for these messages.

Contents of the Add-on Package
The following diagram shows the directory tree structure that comprises the add-on:

http://www.obj-sys.com/docs/UsingASNtoDescribe3GPPMessages.pdf
http://www.obj-sys.com/docs/UsingASNtoDescribe3GPPMessages.pdf
http://www.obj-sys.com/docs/UsingASNtoDescribe3GPPMessages.pdf

Java Encode/Decode API for 3GPP NAS Layer

2

 nasapi
 |
 +- build.xml
 +- acconfig.xml
 +- custsrc
 +- doc
 | +- html
 +- README.txt
 +- specs
 +- test_ts24301_msgs
 +- test_ts24501_msgs

The package should be installed so that the 'nasapi' directory is contained in the 'java' subdirectory of the ASN1C
installation.

• build.xml, acconfig.xml: Ant build and config file for generating the code and building the objsys_nas JAR file.

• custsrc: Contains custom code that is incorporated with the generated code.

• doc: Contains documentation. The PDF file is the user guide.

The html subfolder contains the user guide in HTML format.

After generating code, Javadoc documentation can be generated here by running ant genjavadoc. The JavaDoc
is probably not very useful since the code (and its comments) are generated, but it might help with browsing the
classes.

• specs: Contains the specification files from which code was created. As noted, these specification are often approxi-
mations of messages that 3GPP has not defined using ASN.1. You may find the specifications helpful for correlating
the Java classes to the message and IE structures defined in the 3GPP specifications.

• test_ts24301_msgs: Contains tests for the 24.301 messages.

• test_ts24501_msgs: Contains tests for the 24.501 messages.

Contents of the Standalone Package
The following diagram shows the directory tree structure that comprises the standalone:

 nasapi
 |
 +- build.xml
 +- custsrc
 +- doc
 | +- html
 +- objsys_nas.jar
 +- README.txt
 +- specs
 +- src
 +- test_ts24301_msgs
 +- test_ts24501_msgs
 xmlpull

Java Encode/Decode API for 3GPP NAS Layer

3

The package can be installed in any directory on the target system.

• build.xml: Ant build file for re-building the objsys_nas JAR file. (Unlimited source kits only)

• custsrc: Contains custom code that is incorporated with the generated code. (Unlimited source kits only)

• doc: Contains documentation. The PDF file is the user guide.

The html subfolder contains the user guide in HTML format.

• objsys_nas.jar: JAR file containing NAS and necessary run-time class files for using the standalone kit.

• specs: Contains the specification files from which code was created. As noted, these specification are often approxi-
mations of messages that 3GPP has not defined using ASN.1. You may find the specifications helpful for correlating
the Java classes to the message and IE structures defined in the 3GPP specifications.

• src: Contains Java NAS source files as well as run-time class files necessary for re-building the objsys_nas.jar file.
(Unlimited source kits only)

• test_ts24301_msgs: Contains tests for the 24.301 messages.

• test_ts24501_msgs: Contains tests for the 24.501 messages.

• xmlpull: Directory containing helper JAR for decoding XML and XER messages.

Getting Started
The first thing you will need to do for the Add-on kit is build the JAR for it. This involves generating code, so you
must have an ASN1C SDK license in place. To run the build, use the provided Ant build script. Run ant build.
The build will generate code using asn1c, compile the code, and produce the objsys_nas.jar JAR file.

For the standalone kits, the objsys_nas.jar JAR file is already provided. It contains the class files for the generated
NAS code, as well as those run-time class files that the NAS code depends on.

For the standalone unlimited source kit, the objsys_nas.jar JAR file can be re-built if necessary. To run the build,
use the provided Ant build script as described above for add-on kits. The build will compile code and reproduce the
objsys_nas.jar JAR file.

The easiest way to get started using the add-on is to examine the test_* subdirectories within the package. These
contain test programs for encoding and decoding all of the different message types defined in the standards. Typically,
code from within these samples can be used to form larger programs that can encode or decode larger message sets.

Licensing
The generated code will include embedded license information, based on your ASN1C SDK license. The purpose of
this is to allow the code to run during development. For production usage, you will need to obtain an ASN1C Java
runtime license. If you purchase a license for the unlimited ASN1C Java runtime, a license key/file won't be required.
Otherwise, a runtime license file will be required and you will need to follow the normal procedure for an ASN1C
runtime license (e.g. set ACLICFILE to point to your runtime license file).

Note that you can edit the Ant build script to use the -nortkey ASN1C command line option to prevent embedding
license information in the code. This is useful for eliminating the possibility that you are relying on a temporary,
embedded license key.

Java Encode/Decode API for 3GPP NAS Layer

4

Using JSON (JER) and XML (XER) Encoding
The generated code includes encode and decode functions for JSON (ITU-T X.697 JER) and XML (ITU-T X.693
XER). For guidance on using these functions, refer to the ASN1C SDK Java User Guide.

The sample reader programs (see the next section), as test programs, also include code that roundtrips NAS data
through JER and XER encodings. These programs can also serve as examples of doing conversions to/from these
other encodings.

Sample Programs
Numerous sample programs are included in this package.

Sample programs can be built by using Apache Ant.

To build: ant build

To run the writer program: ant writer

To run the reader program: ant reader

The writer program encodes to message.dat and creates writer.log. The reader program decodes from message.dat and
creates reader.log.

With respect to the Add-on kit, the ASN1C SDK includes a perl script that can be used to run all of the sam-
ple programs. The sample.pl script is located in the SDK installation folder. Commmands to use include: perl
sample.pl java nasapi/test_ts24301_msgs [clean|test]. perl sample.pl java nas-
api/test_ts24501_msgs [clean|test].

Encoding Messages

Encoding 24.301 Messages
Encoding begins with a PDU ("Protocol Definition Unit") type which encompasses the messages for the corresponding
specification.

Class PDU (com.objsys.nas.TS24301Msgs.PDU) has the following fields:

 public SecProtMsgHeader secHdr; // optional
 public L3HdrOptions l3HdrOpts;
 public ProtoDiscr protoDiscr = null;
 public PDU_pti pti;
 public _NAS_PROTOCOL_CLASS_msgType msgType;
 public Asn1Type data;
 public Asn1Null eom;

The secHdr field is for use with security-protected messages, which are not currently supported for Java. This field
will thus not be used.

l3HdrOpts holds the EPS Bearer identity (for Session Management messages) or the Security header type (for
Mobility Management messages)

Java Encode/Decode API for 3GPP NAS Layer

5

protoDiscr identifies whether the message is a Mobility Management or Session Management message. It will be
either ProtoDiscr.epsSessMgmt() or ProtoDiscr.epsMobMgmt() (these are static enum values).

pti is the procedure transaction identity. It is only used for Session Management messages, but for Mobility Man-
agement messages it must be set to "no value".

msgType identifies the message type. This, together with protoDiscr, determines the actual type of the object in
the data field. Class _TS24301MsgsValuesdefines constants for the various messages (see code example below).

data holds the message payload. For example, for an Authentication Request message, it is an AuthRequest object.
A lengthy comment in PDU.java identifies the Java type that should be in this field for each {protocol discriminator,
message type} pair.

eom is not used. It is there as a result of the techniques used to model these non-ASN.1 messages in a way ASN1C
can work with.

The general procedure to encode a message is as follows:

1. Create an instance of the generated PDU type (e.g. com.objsys.nas.TS24301Msgs.PDU) and the specific
message type to be sent (e.g. com.objsys.nas.TS24301Msgs.AuthRequest).

2. Populate the types. For the PDU, set the header fields described above. Set the message object into the PDU's data
field.

3. Initialize the encode buffer.

4. Call the PDU encode function

5. Get the message from the buffer to work with the binary message.

An example with some comments follows. This example is based on the AuthRequest sample.

 /* Create the PDU and Message objects */
 com.objsys.nas.TS24301Msgs.PDU pdu = new PDU();
 com.objsys.nas.TS24301Msgs.AuthRequest data = new AuthRequest();

 /* Populate data structure */
 pdu.protoDiscr = ProtoDiscr.epsMobMgmt();
 pdu.pti = new PDU_pti(PDU_pti._NOVALUE, null);
 pdu.l3HdrOpts = new L3HdrOptions();
 pdu.l3HdrOpts.set_secHdr(new Asn1Integer(0));
 pdu.msgType = new _NAS_PROTOCOL_CLASS_msgType(_TS24301MsgsValues.mt_AuthRequest);
 pdu.data = data;

 ...

 /* Create a message buffer object */

 Asn1NasEncodeBuffer encodeBuffer = new Asn1NasEncodeBuffer();

 /* Encode the PDU into the buffer */
 pdu.encode (encodeBuffer);

 /* Write message to a file. You could also use encodeBuffer.getMsgCopy()
 to get the message into a byte array.
 */

Java Encode/Decode API for 3GPP NAS Layer

6

 encodeBuffer.write (new FileOutputStream (filename));

Some general tips for encoding:

• Fields that are not optional must be assigned or a NullPointerException will occur. In particular, integer and boolean
types are represented using objects (Asn1Integer and Asn1Boolean), so even fields having 0 or false as their value
need to be assigned explicitly.

• Length fields will generally be automatically computed and encoded, but this is not true in all cases. Fields marked
with --<is3GLength/> in the ASN.1 specification files will be automatically computed. If in doubt, you can
look at the generated encode function or experiment to determine whether a given field is automatically computed
or not.

Encoding 24.501 Messages
Encoding begins with a PDU ("Protocol Definition Unit") type which encompasses the messages for the corresponding
specification.

Class PDU (com.objsys.nas.TS24501Msgs.PDU) has the following fields:

 public NAS5GSecProtMsgHdr secHdr; // optional
 public NAS5GProtoDiscr protoDiscr = null;
 public PDU_hdrData hdrData;
 public _NAS5G_PROTOCOL_CLASS_msgType msgType;
 public Asn1Type data;
 public Asn1Null eom;

The secHdr field is for use with security-protected messages, which are not currently supported for Java. This field
will thus not be used.

protoDiscr identifies whether the message is a Mobility Management or Session Management message. It will
be either NAS5GProtoDiscr.sessMgmt5G() or NAS5GProtoDiscr.mobMgmt5G() (these are static enum
values).

hdrData will contain either a PDU_hdrData_mm or PDU_hdrData_sm, depending on the protocol.

msgType identifies the message type (not surprisingly). This, together with protoDiscr, determines the actual
type of the object in the data field. Class _TS24501MsgsValuesdefines constants for the various messages (see
code example below).

data holds the message payload. For example, for an Authentication Request message, it is an AuthRequest object.
A lengthy comment in PDU.java identifies the Java type that should be in this field for each {protocol discriminator,
message type} pair.

eom is not used. It is there as a result of the techniques used to model these non-ASN.1 messages in a way ASN1C
can work with.

PDU_hdrData_mm also has a secHdrType field. The only supported value is NAS5GSecHdrType.noSec().

The general procedure to encode a message is as follows:

1. Create an instance of the generated PDU type (e.g. com.objsys.nas.TS24501Msgs.PDU) and the specific
message type to be sent (e.g. com.objsys.nas.TS24501Msgs.AuthRequest).

2. Populate the types. For the PDU, set the header fields described above. Set the message object into the PDU's data
field.

Java Encode/Decode API for 3GPP NAS Layer

7

3. Initialize the encode buffer.

4. Call the PDU encode function

5. Get the message from the buffer to work with the binary message.

An example with some comments follows. This example is based on the AuthRequest sample.

 /* Create the PDU and Message objects */
 com.objsys.nas.TS24501Msgs.PDU pdu = new PDU();
 com.objsys.nas.TS24501Msgs.AuthRequest data = new AuthRequest();

 /* Populate data structure */
 pdu.protoDiscr = NAS5GProtoDiscr.mobMgmt5G();
 pdu.hdrData = new PDU_hdrData();
 PDU_hdrData_mm mmHeader = new PDU_hdrData_mm();
 pdu.hdrData.set_mm(mmHeader);

 mmHeader.secHdrType = NAS5GSecHdrType.noSec();
 mmHeader.spare1 = new Asn1Integer(0);

 pdu.msgType = new _NAS5G_PROTOCOL_CLASS_msgType(_TS24501MsgsValues.mt_AuthRequest5G);
 pdu.data = data;

 ...

 /* Create a message buffer object */

 Asn1NasEncodeBuffer encodeBuffer = new Asn1NasEncodeBuffer();

 /* Encode the PDU into the buffer */
 pdu.encode (encodeBuffer);

 /* Write message to a file. You could also use encodeBuffer.getMsgCopy()
 to get the message into a byte array.
 */
 encodeBuffer.write (new FileOutputStream (filename));

Some general tips for encoding:

• Fields that are not optional must be assigned or a NullPointerException will occur. In particular, integer and boolean
types are represented using objects (Asn1Integer and Asn1Boolean), so even fields having 0 or false as their value
need to be assigned explicitly.

• Length fields will generally be automatically computed and encoded, but this is not true in all cases. Fields marked
with --<is3GLength/> in the ASN.1 specification files will be automatically computed. If in doubt, you can
look at the generated encode function or experiment to determine whether a given field is automatically computed
or not.

Decoding Messages
Decoding begins with a PDU ("Protocol Definition Unit") type which encompasses the messages for the corresponding
standard.

Java Encode/Decode API for 3GPP NAS Layer

8

The following are the basic steps to decode with a PDU decode function:

1. Prepare a buffer for decoding

2. Create the instance of the PDU to receive the decoded data

3. Call the desired PDU decode function to decode the message

An example with some comments follows. This example is based on the AuthRequest sample.

 /* Create a decode buffer on a file stream.
 The decode buffer could also be created on any InputStream or on a byte
 array.
 */
 FileInputStream in = new FileInputStream (filename);

 Asn1NasDecodeBuffer decodeBuffer = new Asn1NasDecodeBuffer (in);

 /* Create PDU object to decode into.
 For 24.301:
 com.objsys.nas.TS24301Msgs.PDU pdu = new com.objsys.nas.TS24301Msgs.PDU();
 */
 com.objsys.nas.TS24501Msgs.PDU pdu = new com.objsys.nas.TS24501Msgs.PDU();

 /* Decode the data */
 pdu.decode (decodeBuffer);

 /* Do whatever you need to with pdu and the message it contains.
 Use pdu.msgType to determine the message type.
 */

 /* For example, print the content */
 pdu.print (System.out, "pdu", 0);

 /* Or, cast to the correct message type */
 AuthRequest msg = (AuthRequest)pdu.data;

	Java Encode/Decode API for 3GPP NAS Layer
	Table of Contents
	Introduction
	Methodology
	Contents of the Add-on Package
	Contents of the Standalone Package
	Getting Started
	Licensing
	Using JSON (JER) and XML (XER) Encoding
	Sample Programs
	Encoding Messages
	Encoding 24.301 Messages
	Encoding 24.501 Messages

	Decoding Messages

