objective

SYSTEMS, INC.

C Encode/Decode API for
3GPP Non-Access Stratum
(NAS) and Radio Resource
Control (RRC)

Precompiled Dynamically Linked Library

The software described in this document is furnished under a license agreement and may be used only in
accordance with the terms of this agreement. This document may be distributed in any form, electronic or
otherwise, provided that it is distributed in its entirety with the copyright and this notice intact. Comments,
suggestions, and inquiries may be sent by electronic mail to <i nf o@bj - sys. conp.

Copyright © 2024 Objective Systems, Inc.

Table of Contents

Fg11 oo (¥ oi [o R PP PP TPPPPTRUTPPPIN 1
L= (gl (o] oo VA PO PP TPPPTTRP 1
ContentS Of the PaCKAGEeueiiiiii ettt e et et eeene s 2
€T 1 g To IS = (= o [TSP TUP PP UPPPPTTPPPN 3
SAMPIE PrOGIAIMIS ...ttt ettt e et e ettt e e et e e et et e e et et e e et et e e et et e e e e eba s 3
ENCOUING IMESSATES ...ttt ettt ettt ettt ettt e e et et b e ettt a e e et e b e ettt b e e et ab e e et ab e e e na s 5
Encoding Messages Other Than TS2430IMSG_PDUoiuiiiiiiiiiiieeeii et 5
Encoding TS2430IM ST PDUooiiiiiiiiii ettt ettt e e e 7
DECOUING MESSAOES ...t eeeetti ettt e ettt ettt e ettt e e ettt e e ettt e et et e e et ettt e e et et s e et eebt e e e ettt e e eesbn s eeeenbnaeaees 9
Decoding Messages Other Than TS24301MSG_PDUuuiiiiiiiiiiiii e 9
Decoding TS2430LIMST_PDUuiiiiiiiiiei ittt e et ettt e e e et e e e eeaa e eeees 11
NAS SECUITY ettt ettt ettt ettt ettt ettt et e et e e et bt et e e b e et e e b e e et bb e e e e b e e e e na s 11
Working With GERAN RRC MESSA0EScciitiieiiiiiie ettt e et e et e et e et e et et e e et et e e e e et e e e e eaa s 12
RR Short ProtoCOl DiSCHIMINGLOTcccutueiiii ettt ettt e et e et e e e e s 12
L2 PSEUAO LENGLN ...ttt ettt e e 12
Standard L3 FOrmMated MESSAJESccuuueiiiitieeiiit ettt ettt e ettt e ettt e et et r e et e bt e e e e etbaeeenneaeeeens 12

BT o= T TP P PP TPPPPTTRPPPIN 13

Introduction

The Objective Systems 3GPP Protocol Encode/Decode C API for NASand RRC isadynamically-linked library (DLL)
for encoding and decoding messages from the 3rd Generation Partnership Project (3GPP) Non Access Stratum (NAS)
and RRC specifications. These messages are described in the following 3GPP technical specifications:

» TS24.007 - Mobile radio interface signaling layer 3; General Aspects

» TS24.008 - Mobileradio interface Layer 3 specification; Core network protocols; Stage 3

e TS 24.011 - Point-to-Point (PP) Short Message Service (SMS) support on mobile radio interface
* TS24.301 - Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3

» TS 44.060 - Mobile Station (MS) - Base Station System (BSS) interface; Radio Link Control / Medium Access
Control (RLC/MAC) protocol

e TS44.018 - Mobileradio interface layer 3 specification; Radio Resource Control (RRC) protocol

This document explains how to usethis API. Note that the API for the messagesfor the NA S protocol for EPS (defined
in 24.301) has some special requirements.

The code for this APl was compiled on Windows using Visual Studio 2010 and on Linux using gcc. Since the library
isdistributed asaDLL, it should be compatible with applications built with other versions of Visual Studio.

Methodology

This APl has been devel oped in the C programming language, using Objective Systems ASN1C compiler to generate
the structures and encode/decode functions. The code was generated from a mixture of ASN.1 and CSN.1 specifica
tions. In cases where the relevant technical specifications did not use either ASN.1 or CSN.1, we approximated the
given message or information el ement using one of these notations. Since thiswas an approximation, it was al so neces-
sary to use acombination of configuration directives and custom code to achieve the desired results. The configuration
directives are made effective by using the'-3gl3' command-line option with ASN1C. Our white paper, "Using ASN.1to
Describe 3GPP Messages' [http://www.obj-sys.com/docs/UsingA SNtoDescribe3GPPM essages.pdf], describes how
messages were approximated using ASN.1. (Note that this paper does not reflect our more recent capability to directly
compile CSN.1 notation.)

Theendresultisan API that consisted of C typesand structuressimilar to what auser would get by compiling astandard
ASN.1 specification. The other benefit of this approach is that in addition to encode/decode functions, supporting
functions such as print, copy, compare, etc. can be generated from the definitions.

Note that one or more ASN.1 modules are associated with each of the above 3GPP specifications. In some of these
modules, PDU (“Protocol Definition Unit”) types are defined. These PDU types are used to represent an entire group
of (or possibly all) messages from that module. Common fields are also factored out into the PDU type.

The prefixes for each of thetypesin the API are given in the following table:

Table 1. Module Prefixes

TS24008IE prefix for the information elements defined in 24.008
TS24008Msg prefix for the messages defined in 24.008
TS240111E prefix for the information elements defined in 24.011
TS24011Msg prefix for the messages defined in 24.011

http://www.obj-sys.com/docs/UsingASNtoDescribe3GPPMessages.pdf
http://www.obj-sys.com/docs/UsingASNtoDescribe3GPPMessages.pdf
http://www.obj-sys.com/docs/UsingASNtoDescribe3GPPMessages.pdf

C Encode/Decode API for 3GPP Non-Access Stra-
tum (NAS) and Radio Resource Control (RRC)

TS24301IE prefix for the information elements defined in 24.301
TS24301Msg prefix for the messages defined in 24.301
TS245011E prefix for the information elements defined in 24.501
TS24501Msg prefix for the messages defined in 24.501
TS44018IE prefix for the information elements defined in 44.018
TSA4018Msg prefix for the messages defined in 44.018
TS440601E prefix for the information elements defined in 44.060

The PDU types we have defined are given in the following table:

Table 2. PDUs

TS24008Msy_PDU

PDU for the messages defined in 24.008

TS24011Msy_CP_PDU

PDU for the CP messages defined in 24.011

TS24011Msy_RP_PDU

PDU for the RP messages defined in 24.011

TS24301Msy_PDU

PDU for the messages defined in 24.301

TS24501Msy_PDU

PDU for the messages defined in 24.501

TS44018Msy_L2 PSEUDO_LEN_PDU

PDU for 44.018 RRC messages using an L2 Pseudo
Length

TS44018Msy_RR_Short_ PD_PDU

PDU for 44.018 RRC messages using ashort protocol dis-
criminator

TS44018Msy_DL_DCCH_PDU

PDU for 44.018 RRC standard L3 messages transmitted
on the main DCCH from network to M S (downlink)

TS44018Msy_UL_DCCH_PDU

PDU for 44.018 RRC standard L3 messages transmitted
on the main DCCH from M S to network (uplink)

TS44018Msy_UL_SACCH_PDU

PDU for 44.018 RRC standard L3 messages transmitted
on the SACCH from M S to network (uplink)

Note that for 44.018 RRC messages, you must choose the PDU type according to the message format and (in some

cases) the channel and message direction.

Contents of the Package

The following diagram shows the directory tree structure for the API, where <ver si on> would be replaced
with a 3-digit version number and <pl at f or m> would be replaced with a platform indicator. For example,
NAS RRC DLLv100w32 would be version 1.0.0 for 32-bit Windows

NAS_RRC DLL<versi on><pl at f or n»
+- doc
+- debug
| +- lib
| +- src

| +- src2

+- rel ease

C Encode/Decode API for 3GPP Non-Access Stra-
tum (NAS) and Radio Resource Control (RRC)

+ lib
+- src
+- src2

rt3gppsrc

rtsrc

rtxsrc

test _ts24008_nsgs

+— +— +— +— +—

test_ts24301_nsgs

+- test_ts44018 _nsgs

The purpose and contents of the various subdirectories are as follows:
e debug\ | i b —Containsthe debug version of the DLL.

debug\ sr ¢ — Contains the debug version of ASN1C-generated header files.
* rel ease\l i b —Contains the optimized version of the DLL.

r el ease\ sr ¢ — Contains the optimized version of ASN1C-generated header files.
* rt*src —Containsthe header files for the common run-time libraries.
» doc — Contains this document.

* test_* messages — Contain sample programs that illustrate how to use the API.

Getting Started

The packageisdelivered asazipped archivefile (.zip) file (Windows) or acompressed tar archive (.tar.gz) file (Linux)
that will allow installation to any directory on the target system. The sample programs use relative directory paths, so
it is not necessary to create any type of top-level environment variables.

All of the necessary object files have been compiled and installed in the lib subdirectory. The code can be tested by
executing the sample programsin the test_* _messages subdirectories. These sample programs consist of areader and
writer program. The writer program populates a data variable with some data, calls an encode function that writes

the encoded byte stream to a file. The reader program reads this file, decodes the data into a C structure, and then
prints the decoded results.

Sample Programs

Numerous sample programs are included in this package.

Sample programs for Windows can be built by using the Visual C++ nnake utility program to execute the provided
makefile. The procedureis asfollows:

1. Open aVisua Studio terminal window.

2. Change directory to one of the sample directories above. For example:

C Encode/Decode API for 3GPP Non-Access Stra-
tum (NAS) and Radio Resource Control (RRC)

cd c:\<acroot>\c\NAS RRC DLLv100w32\t est _t s24008_nsgs\ Abort
3. Execute nmake:

nmake
The result should be writer and reader programs. The writer should be executed first. It will encode a set of test data
and write the record out to anessage. dat file. The reader program can then be executed (via reader -v) to read

the encoded file and decode the contents.

Note that in order to execute a program that uses the DLL, the operating system must be able to find the file. Two
ways this can be done are as follows:

1. Modify the PATH environment variable to include the folder where the DLL islocated. For example:
set PATH=%PATHY c:\ NAS RRC DLLv100w32\ debug\lib
Alternately, the DLL file can be copied into a directory already located in the PATH.

2. Copy the DLL fileinto same directory in which the executable fileis located.

It's also necessary to make sure the software can find the license file (osyslic.txt) that was provided with the kit. On
Windows this can be accomplished by entering the following command:

set ACLI CFl LE=<pat h>\ osyslic. txt
for example,
set ACLI CFl LE=c:\ nasdl | _li cense\osyslic.txt

On Linux, the sample program can be built by using the GNU nake utility program to execute the provided makefile.
The procedureis asfollows:

1. Open ashell termina window.

2. Change directory to one of the sample directories above. For example:
cd NAS RRC DLLv100Il nx/test ts24008 nsgs/ Abort

3. Execute make:
make

Note that in order to execute a program that uses the shared object on Linux, the operating system must be ableto find
the shared object (.s0) file. Two ways this can be done are as follows:

1. Create or modify the LD_LIBRARY_PATH environment variable to include the directory where the shared object
fileislocated. For example:

export LD LI BRARY_PATH=$HOVE/ NAS_RRC DLLv100Il nx/ debug/lib

2. The shared object file may aso be copied into a system directory that is already searched for shared object files
(for example, the/ usr /| i b directory).

It's also necessary to make sure the software can find the license file (osyslic.txt) that was provided with the kit. On
Linux this can be accomplished by entering the following command:

C Encode/Decode API for 3GPP Non-Access Stra-
tum (NAS) and Radio Resource Control (RRC)

export ACLI CFl LE=<pat h>/ osyslic.txt
for example,

export ACLI CFl LE=/usr/nasdl | _license/osyslic.txt

Encoding Messages

As mentioned above, the ASN.1 modules define one or more PDU (“Protocol Definition Unit”) types to encompass
all, or asubset of, the messages for the corresponding specification. Generally, the procedure for encoding is the same
for all PDU types. However, TS24301Msg_ PDU does have some additional requirements related to NAS security.

Encoding Messages Other Than TS24301Msg_PDU

WE'l use the PDU for TS 24.008 as our example. File TS24008M sgs.asn contains atype defined as follows:

PDU :: = SEQUENCE {
-- L3 header, octet 1, bits 5 thru 8
| 3Hdr Opt s CHO CE {
ski pl nd | NTEGER(O. . 15),
transl d SEQUENCE ({
fl ag BOOLEAN,
val ue | NTEGER(O. . 255)

}
1
prot oDi scr NAS- PROTOCOL- CLASS. &pr ot oDi scr ({TS24008- | E- OBJECTSET}) ,
sendSeqNum | NTEGER (0..3) OPTI ONAL,
nsgType NAS- PROTOCOL- CLASS. &nsgType ({TS24008- 1 E- OBJECTSET}),
dat a NAS- PROTOCOL- CLASS. &Val ue
({TS24008- | E- OBJECTSET} { @r ot oDi scr, @sgType})

The first 4 elements within this definition (I 3Hdr Opt s, pr ot oDi scr, sendSeqNum and msgType) describe
header fields as defined in the TS 24.007 and TS 24.008 documents. The final datafield is a variable type field that
defines the contents for all of the different message types. The combination of protocol discriminator and message
type serve to specify the message type.

The general procedure to encode a message of thistypeisasfollows:

1. Declare variables of the generated PDU type (e.g. TS24008Msg_ PDU) and the specific message type to be sent
(e.g. TS24008Msg_| denti t yRequest).

2. Populate the types. The address of the specific message structure would be stored within the PDU union structure.
The generated asn1Set TC_* (set table constraint) functions can be used to set fixed value fields (protocol dis-
criminator and message type) and the pointer to the message data in one call.

3. Initialize the context structure and set the context buffer pointer.
4. Call the PDU encode function
5. Get the message pointer and length to work with the binary message.

Before a NAS encode function can be called, the user must first initialize an encoding context block structure. The
context block isinitialized by calling ther t | ni t Cont ext function.

C Encode/Decode API for 3GPP Non-Access Stra-
tum (NAS) and Radio Resource Control (RRC)

Only memory-buffer based encoding is supported because the message sizes are generally small (normally less than
256 bytes).

Todomemory-based encoding, ther t xI ni t Cont ext Buf f er functionwould becalled. Thiscan beused to specify
use of a static or dynamic memory buffer. Specification of a dynamic buffer is possible by setting the buffer address
argument to null and the buffer size argument to zero.

The PDU encode function can then be called to encode the message. If the return status indicates success (0), then the
message will have been encoded in the given buffer. The length of the encoded message can be obtained by calling the
rt xCt xt Get MsgLen run-time function. If dynamic encoding was specified (i.e., a buffer start address and length
were not given), ther t xCt xt Get MsgPt r run-time function can be used to obtain the start address of the message.
Thisroutine will also return the length of the encoded message.

A program fragment that could be used to encode a 3G NAS Identity Request message is as follows:

#i nclude "rt3gppsrc/ TS24008Msgs. h" /* include file generated by ASNIC */

main ()
{
TS24008Msg_PDU pdu;
TS24008Msg_I dentit yRequest i dReq;

OSCTXT ct xt;

OSOCTET nsgbuf [256], *nsgptr;

int i, len, stat;

const char* filename = "nessage. dat”;

/* Initialize context structure */

stat = rtlnitContext (&ctxt);

if (0 !=stat) {
printf ("rtlnitContext failed; status = %\n", ret);
rtxErrPrint (&ctxt);
return ret;

}

/* Populate C structure */

pdu. | 3Hdr Opt s. u. ski pl nd = 0;
asnlSet TC _TS24008Msg_PDU obj _IdentityRequest (&ctxt, &pdu, & dReq);

OSCRTLMEMSET (& dReq, 0, sizeof (idReq));
i dReq. val ue. typeOl dent = TS24008I E_IdentityTypeVal ue_typeOf|dent _inei;

/* Encode */
rtxCt xt Set Buf Ptr (&ctxt, msgbuf, sizeof (msgbuf));

stat = NASEnc_TS24008Msg_PDU (&ct xt, &pdu);

if (0!=stat) {
printf ("encode PDU failed; status = %l\n", ret);
rtxErrPrint (&ctxt);
return ret;

}

megptr = rtxCt xt Get MsgPtr (&ctxt);

C Encode/Decode API for 3GPP Non-Access Stra-
tum (NAS) and Radio Resource Control (RRC)

len = rtxCtxt Get MsgLen (&ctxt);

}
Encoding TS24301Msg_PDU

The procedure for encoding TS24301Msg_PDU is basically the same as given above. When the message is to be
encoded with security protection, however, there are a few additional requirements. These steps are not necessary
when encoding a message without security protection.

For security protected messages, including SERVI CE REQUEST messages (which always have integrity protection):
1. Initialize the NAS security context

2. Specify the algorithm and keysto use

3. Set NAS security parameters

4. Assign security header fields in the PDU.

5. Freethe NAS security context when finished.

The following code illustrates these steps. It encodes an ACTI VATE DEDI CATED EPS BEARER CONTEXT
ACCEPT message with both integrity and confidentiality protection.

#i ncl ude "TS24301Msgs. h"
#i ncl ude "rt3gppsrc/rt3gppNasSec. h"

int main (int argc, char** argv)

{
TS24301Msg_PDU pdu;
TS24301Msg_Act vDedEPSBear er Ct xt Acc dat a;
TS24301Msg_Act vDedEPSBear er Ct xt Acc* pval ue = &dat a;

OSCTXT ct xt;

OSOCTET nsgbuf [256], *nsgptr;

0SSl ZE | en;

int i, ret;

OSCrypt 128Key integKey = { ... };
OSCrypt 128Key encryptKey = { ... };

/* Initialize context structure */

ret = rtlnitContext (&ctxt);

if (0O!=ret) {
printf ("rtlnitContext failed; status = %\n", ret);
rtxErrPrint (&ctxt);
return ret;

}

/* Initialize the NAS Security context */
ret = rtx3gppSeclnitialize(&ctxt);
if (0O!=ret) {

C Encode/Decode API for 3GPP Non-Access Stra-
tum (NAS) and Radio Resource Control (RRC)

rtxErrPrint (&ctxt);

/* Specify the integrity and encryption algorithnms and keys.
This only needs to be done the first time or when these val ues change
*/
ret = rtx3gppAssi gnAl gorithnKeys(&ctxt, & ntegKey, &encryptKey,
OS3GPPSecAl gorit hm AES, OS3GPPSecAl gorit hm AES)
if (0!=ret) {
rtxErrPrint (&ctxt);
}

/* Assign count, bearerld, direction in the NAS security context.
These act as input into the security algorithmns.

*/

ctxt. p3gppSec- >count = 15;

ct xt . p3gppSec- >bearerld = 0;

ctxt.p3gppSec->direction = 0; /*uplink*/

/* Popul ate data structure */
asnllinit_TS24301Msg_PDU (&pdu);

/* Specify the security header is present. Popul ate the security header
fields. The security header's protocol discrimnator is always EPS
Mobility managenent. The msgAut hCode field will be filled in by function
NASEnc_TS24301Msg_PDU.
*/

pdu. m secHdr Present =
pdu. secHdr . secHdr Type
pdu. secHdr . prot oDi scr
pdu. secHdr . segNumnber

TS24007L3_SecHdr Type_i nt egPr ot AndCi pher
TS24007L3_Pr ot oDi scr _epshMbbMynt ;
1;

nnne

/* The skiplndicator is used for the nessage's ESP bearer identity;

it is always zero. The PDU s protocol discrimnator (unlike the security
header's protocol discrimnator above) is set according to the nessage
bei ng protected.

*/

pdu. | 3Hdr Opts.t = T_TS24007L3_L3Hdr Opti ons_ski pl nd;

pdu. | 3Hdr Opt s. u. ski pl nd = O;

pdu. prot oDi scr = TS24007L3_Prot oDi scr _epsSessWgnt ;

pdu. megType = ASN1V_ts24301Msg_nt _Act vDedEPSBear er Ct xt Acc;

/* Encode data

NASEnc_TS24301Msg_PDU wi Il encrypt the nessage and compute the nessage
aut hentication code according to the security settings chosen above.

*/

rtxCtxt Set Buf Ptr (&ctxt, msgbuf, sizeof (nmsgbuf));

C Encode/Decode API for 3GPP Non-Access Stra-
tum (NAS) and Radio Resource Control (RRC)

ret = NASEnc_TS24301Msg_PDU (&ct xt, &pdu);

if (0!=ret) {
printf ("encode PDU failed; status = %\n", ret);
rtxErrPrint (&ctxt);
return ret;

/* Free the NAS security context */

rtx3gppSecFree(&ct xt) ;

}

When the message being security protected isa SERVI CE REQUEST message, the above procedure is basically the
same, but afew differences do exist:

» TS24301Msg_Ser vi ceRequest hasitsownsecHdr field that issimply the security header type. This means
there are two fields (this one and TS24301Msg_PDU. secHdr . secHdr Type) that have the security header
type; both should be set to TS24007L3_SecHdr Type_secHdr For SvcReq.

» TS24301Msg_Ser vi ceRequest hasitsown MACfield, shor t MAC. Thisdoesnot need to be set. It will beas-
signed by NASEnc_TS24301Msg_PDU(TS24301Msg_PDU. secHdr . msgAut hCode will not be assigned).

Decoding Messages

As mentioned above, the ASN.1 modules define one or more PDU (“Protocol Definition Unit”) types to encompass
all, or asubset of, the messages for the corresponding standard. Generally, the procedure for decoding is the same for
all PDU types. However, TS24301Ms g_ PDU does have some additional requirements related to NAS security.

Decoding Messages Other Than TS24301Msg_PDU

The following are the basic steps to decode with a PDU decode function:

1. Prepare a context variable for decoding

2. Initialize the data structure to receive the decoded data

3. Call the desired PDU decode function to decode the message

4. Freethe context after use of the decoded data is complete to free allocated memory structures

Before aNAS decode function can be called, the user must first initialize a context block structure. The context block
isinitialized by calling ther t | ni t Cont ext function.

Only memory-buffer based encoding is supported for 3GPP layer 3 because the message sizes are generally small
(normally less than 256 bytes).

To do memory-based decoding, ther t xI ni t Cont ext Buf f er function would be called. The message to be de-
coded must reside in memory. The arguments to this function would then specify the message buffer in which the
data to be decoded exists.

C Encode/Decode API for 3GPP Non-Access Stra-
tum (NAS) and Radio Resource Control (RRC)

The PDU variable that is to receive the decoded data must then be initialized. This can be done by either initializing

the variable to zero using memset, or by calling the ASN1C generated initialization function.

The PDU decode function can then be called to decode the message. If the return status indicates success (0), then the
message will have been decoded into the PDU type variable. The decode function may automatically alocate dynamic
memory to hold variable length variables during the course of decoding. This memory will be tracked in the context
structure, so the programmer does not need to worry about freeing it. It will be released when the either the context is

freed or explicitly when ther t xMentr ee orrt xMenReset functionis called.

Thefinal step of the procedure isto free the context block. This must be done regardless of whether the block is static
(declared on the stack and initialized using r t | ni t Cont ext), or dynamic (created using r t NewCont ext). The

function to free the context isr t Fr eeCont ext .

A program fragment that could be used to decode a 3G NAS PDU isasfollows:

#i nclude "rt3gppsrc/ TS24008Msgs. h" /* include file generated by ASNIC */

main ()

{

TS24008Msg_PDU dat a;

OSCTXT ct xt;

OSOCTET* nsgbuf;

const char* filename = "nessage. dat”;
int stat;

0SSl ZE | en;

/* step 1: initialize context */
stat = rtlnitContext (&ctxt);

if (stat '=0) {
printf (“rtlnitContext failed (check Iicense)\n");
rtErrPrint (&ctxt);
return stat;

}

/* step 2: read input file into a nenory buffer */

stat = rtxFil eReadBinary (&ctxt, filenanme, &pMsgBuf, & en);
if (0 == stat) {
stat = rtxlnitContextBuffer (&ctxt, pMsgBuf, |en);

}

if (0!=stat) {
rtxErrPrint (&ctxt);
rt FreeCont ext (&ctxt);
return stat;

}

/* step 3: set protocol version nunber */
rt xCt xt Set Pr ot ocol Version (&ctxt, 8);
/* step 4: call the decode function */

stat = NASDec_TS24008Msg_PDU (&ctxt, &data);

10

C Encode/Decode API for 3GPP Non-Access Stra-
tum (NAS) and Radio Resource Control (RRC)

if (stat == 0)

{
process received data..

}

el se {
/* error processing... */
rtxErrPrint (&ctxt);

}

/* step 5: free the context */
rt FreeCont ext (&ctxt);

}
Decoding TS24301Msg_PDU

The procedure for decoding TS24301Msg_PDU s basically the same as given above. When the encoded message is

security protected, however, there are a few additional requirements. These steps are not necessary when decoding a

message without security protection (but, unless you are certain the message is not security protected, you will need

to follow these requirements).

For security protected messages, including SERVI CE REQUEST messages (which always have integrity protection):

1. Initialize the NAS security context

2. Specify the algorithm and keysto use

3. Set NAS security parameters

4. Freethe NAS security context when finished.

Each of these stepsisillustrated in the encoding example above. The NASDec_TS24301Msg_ PDU function will:

« verify the message authentication code of an integrity protected message. The MAC (or short MAC) will be decoded
intoeither TS24301Msg_PDU. secHdr . nsgAut hCode or TS24301Msg_Ser vi ceRequest . short MAC.
If MAC verification fails, RTERR_| NVMAC is returned.

« decrypt and further decode a confidentiality protected message

NAS Security

FunctionsNASDec_TS24301Msg_PDUand NASDec_ TS24301Msg_ PDU support security protected messages as
described in TS 24.301. This section provides some important details about this support.

First, TS 24.301 specifies multiple security algorithms that can be used for security protection. This APl supports
two of them: the null algorithm and the AES-based algorithms. The algorithms based on SNOW3G and ZUC are nhot
currently supported.

Finally, by design, you may provide your own implementation of the security functions exported by the asn1rt3gpp
library. Thiswould be useful in any of the following situations:

* You want to use a different implementation of the AES algorithms than we have provided.

 You want to implement the algorithms we have not implemented (SNOW3G, ZUC).

11

C Encode/Decode API for 3GPP Non-Access Stra-
tum (NAS) and Radio Resource Control (RRC)

If you choose to provide your own implementation, the functions to implement (declared and documented in
rt 3gppNasSec. h) are;

» rtx3gppAssi gnAl gorithnKeys
* rtx3gppCG pher

e rtx3gppConmput eMAC

Working with GERAN RRC Messages

As noted in the Methodology section, there are several PDU types defined for GERAN RRC messages (3GPP TS
44.018). Y ou must choose the correct PDU type to use based on the message format, message channel, and message
direction. Having chosen the correct PDU type, you proceed with encoding/decoding in the same way as described in
the sections on encoding and decoding messages "other than TS24301Msg_PDU". The following paragraphs give an
overview of the PDU types for RRC and afew useful tips.

RR Short Protocol Discriminator

For messages that use the RR Short Protocol Discriminator format, use the following PDU:

RR- Short - PD- PDU :: = SEQUENCE ({
rr-short-PD | NTEGER (0..1) DEFAULT O,
negType RR- SHORT- CLASS. &sgType ({RR- Short-PD Messages}),
short - | ayer-2- header | NTEGER (0..3) DEFAULT O,
dat a RR- SHORT- CLASS. &Val ue ({RR- Short - PD- Messages}{ @sgType})

The msgType field determines the type of the value in the dat a field.

L2 Pseudo Length

For messges using the L2 pseudo length format, use the following PDU:

L2- PSEUDO- LEN- PDU : : = SEQUENCE {
| 2PseudoLen L2- Pseudo-Lengt h,
| 3Hdr Opts L3Hdr Options, -- L3 header, octet 1, bits 5 thru 8
prot oDi scr L2- PSEUDO LEN- CLASS. &pr ot oDi scr ({L2- PSEUDO LEN- PDU- Messages}),
nmsgType L2- PSEUDO LEN- CLASS. &rsgType ({L2- PSEUDO LEN- PDU- Messages}),
dat a L2- PSEUDO- LEN- CLASS. &Val ue ({L2- PSEUDO LEN- PDU- Messages}{ @r ot oDi scr, @sgType}
restCctets L2-PSEUDO LEN- CLASS. &Rest Octets ({L2- PSEUDO LEN- PDU- Messages} { @r ot oDi scr,

Fieldspr ot oDi scr and nsgType determine the types of thevaluesindat a andr est Cct et s.

Standard L3 Formatted messages

For messages using the standard L3 format, you must choose the PDU type based on the channel and/or direction.
There are three PDU types, al basically the same except that they have different sets of messages allowed. In each
case, thefieldspr ot oDi scr and nsgType determine the type of the valuein dat a.

For downlink messages on the main DCCH:

12

C Encode/Decode API for 3GPP Non-Access Stra-
tum (NAS) and Radio Resource Control (RRC)

DL- DCCH- PDU : : = SEQUENCE {
| 3Hdr Opts L3HdrOptions, -- L3 header, octet 1, bits 5 thru 8
prot oDi scr NAS- PROTOCOL- CLASS. &pr ot oDi scr ({DL- DCCH Messages}),
msgType NAS- PROTOCOL- CLASS. &nsgType ({DL- DCCH Messages}),
dat a NAS- PROTOCOL- CLASS. &Val ue ({DL- DCCH Messages}{ @r ot oDi scr, @sgType})
}

For uplink messages on the main DCCH:

UL- DCCH PDU : : = SEQUENCE ({
| 3Hdr Opts L3Hdr Options, -- L3 header, octet 1, bits 5 thru 8
prot oDi scr NAS- PROTOCOL- CLASS. &pr ot oDi scr ({UL- DCCH Messages}),
nmsgType NAS- PROTOCOL- CLASS. &nsgType ({UL- DCCH Messages}),
dat a NAS- PROTOCOL- CLASS. &Val ue ({UL- DCCH Messages}{ @r ot oDi scr, @msgType})

}
For uplink messages on the SACCH:
UL- SACCH- PDU : : = SEQUENCE ({
| 3Hdr Opts L3HdrOptions, -- L3 header, octet 1, bits 5 thru 8

prot oDi scr NAS- PROTOCOL- CLASS. &pr ot oDi scr ({UL- SACCH Messages}),
nsgType NAS- PROTOCOL- CLASS. &nsgType ({UL- SACCH Messages}),
dat a NAS- PROTOCOL- CLASS. &Val ue ({UL- SACCH Messages}{ @r ot oDi scr, @sgType})

}
Tips
* All of the supported RRC messages have example codeint est _t s44018_nsgs

» Thereareafew messagesthat consist of nothing more than asingle octet value (e.g. "Channel Request™). We haven't
defined atype for these messages.

» There are two messages that don't use any of the above formats and don't carry a message type. They are
"Synchronization Channel Information" and "COMPACT Synchronization Channel Information”. For these, there
is no PDU type; you only need the message types to work with: TS44018Msg_SynchChannel | nf o and
TS44018Msg_Conpact SynchChannel | nf o.

* src2/ TS44018M sc. h declares several helper functions for working with ARFCN lists.

13

	C Encode/Decode API for 3GPP Non-Access Stratum (NAS) and Radio Resource Control (RRC)
	Table of Contents
	Introduction
	Methodology
	Contents of the Package
	Getting Started
	Sample Programs
	Encoding Messages
	Encoding Messages Other Than TS24301Msg_PDU
	Encoding TS24301Msg_PDU

	Decoding Messages
	Decoding Messages Other Than TS24301Msg_PDU
	Decoding TS24301Msg_PDU

	NAS Security
	Working with GERAN RRC Messages
	RR Short Protocol Discriminator
	L2 Pseudo Length
	Standard L3 Formatted messages
	Tips

