
 1

The Use of ASN.1 Encoding Rules for Binary XML
Ed Day (eday@obj-sys.com)

Objective Systems Inc., Exton, PA USA

Introduction

This paper discusses the use of Abstract Syntax Notation 1 (ASN.1) binary encoding
rules for the efficient encoding and transfer of XML data. Its goal is not to provide
exhaustive details on the intricacies of ASN.1 binary encodings, but rather to provide an
overview of the different available encoding solutions and how they might apply to the
requirements for a binary XML solution.

It is assumed that a schema is used to define the structure of the data. The schemas
used throughout this paper are W3C XML Schema [XSD] to define the XML data and
ASN.1 schema [ASN1] to define the format of the binary data encoding.

The following encoding rules standardized for use with ASN.1 will be discussed:

1. The Basic Encoding Rules (BER) [BER] and their derivatives, the Distinguished
Encoding Rules (DER) and Canonical Rules (CER) as specified in ITU-T
international standard X.690, and

2. The Packed Encoding Rules (PER) [PER] as defined ITU-T international
standard X.691. This standard specifies multiple forms of PER including aligned
and unaligned as well as basic and canonical. This paper will focus on the basic
aligned form and makes the assumption that results achieved with the other
forms would be similar to what is presented in this paper.

A standardization effort is currently underway within the ITU-T to define new standards
that makes use of PER and other technologies that attempts to make further gains in
reducing message sizes and processing times in this area. These new efforts are
known as “Fast Web Services” [FWS] and “Fast InfoSet” [FIS]. They are mentioned
briefly in this paper, but are still considered to be too preliminary at this time for detailed
analysis. This paper instead will focus on the direct application of BER and PER
technologies to XML data to determine message size and processing speed gains.

 2

Requirements for Binary XML

The following are a set of requirements that would seem desirable for a binary XML
protocol. This set of requirements was obtained mostly from the work of the W3C
Workshop on Binary Interchange of XML Information Item Sets held in Santa Clara, CA
in 2003. This set is by no means exhaustive. It represents what is believed to be the
most recurrent themes of the items presented.

Reduced Message Sizes

A binary XML protocol should reduce message sizes by an order of magnitude over
what is currently produced in XML form. The standard argument is that if this is not
achievable, it is better to stay with the text-based alternative (XML), as it is easier to
understand and work with.

Improved Performance

Reduced message sizes must lead to improved performance in terms of CPU
processing time and message throughput. An argument against current compression
technologies such as gzip [GZIP], is that they are very CPU intensive and gains in
reducing messages size are offset by the amount of CPU processing cycles needed to
achieve those gains.

Interoperability

An endpoint developed by a vendor using a binary XML solution must be able to
interoperate with an endpoint developed by another vendor using different platforms,
computer languages, compilers, etc. In short, the solution must be standardized. This is
what makes XML attractive today and what made ASN.1 attractive to
telecommunications and other companies many years ago.

Self-describing format

One of the reasons XML is successful is because everything you need to know about
the message is built into the message itself. This combination of metadata and content
is quite powerful, but it comes at the expense of large message sizes. A binary
alternative will most likely not offer this same degree of self-description, but it should
maintain some structure to allow someone to determine what the contents of the
message are without the aid of specialized software (i.e. manual decoding).

Support streaming transfers

This refers to the ability to send data as a stream of bytes or characters without knowing
up front the length of the data to be sent. It makes message processing easier when
large amounts of data are to be sent because the process of looking ahead to count the
number of items to be sent before actually sending the items can be expensive in terms

 3

of processing power. XML, with its encapsulation of items within start and end tags,
provides this capability.

Random access to data (XPath)

It is sometimes desirable to select items from within a message or to search for a
particular item within a message. XPath [XPATH] provides a way to do this with an XML
document. A binary solution should provide a similar capability.

Standard XML API support: SAX and DOM

The Standard API for XML (SAX) is a de-facto programming standard [SAX] that defines
a set of callbacks or events that are fired as an XML document is parsed. The
Document Object Model (DOM) is a W3C standard [DOM] that defines a tree-structure
that can be built from an XML document. Both of these items are used extensively in the
XML world and many applications have been built around them. A binary XML solution
should provide a means to work with these and other similar XML programming
standards.

Validation: well-formed and schema compliant

A key component of XML message processing is the ability to quickly validate and reject
messages that do not pass certain criteria checks. The simplest of these checks is well-
formedness – is the overall structure of a document valid? Parsers are now able to
validate a message against a schema (typically a DTD or XML schema) to verify that the
data within the message is within the defined set of constraints. A binary XML solution
should allow similar validation to be done.

Canonical Form

Security processing of messages requires that there be no variations in how a given
message is constructed. A binary XML format must define a canonical form to allow
security processing such as digital signatures to be applied to message parts.

Free tool support

Many free tools exist today for working with data in XML format. These work to make a
technology gain widespread use. A binary XML solution should have free tool support –
particularly in the form of viewer software that allows someone to examine the structure
and contents of the binary message.

 4

Schema Languages and Encoding Rules

Methodologies discussed in this paper for using ASN.1 Encoding Rules for Binary XML
rely on the separation of schemas used to define message structures (sometimes
referred to as “metadata”) from the composition of the actual messages/documents
themselves.

The following table shows schemas that are primarily related with XML documents and
compares them with ASN.1. ASN.1 is a schema primarily designed for use with binary
encoding rules:

Schema Language Encoding Rules

XML Schema
RelaxNG
Schematron

XML

ASN.1

BER
DER
CER
PER
XER (which is XML!)

Table 1 – Schema Languages and Encoding Rules

The schema language describes the structure of messages; the encoding rules are used
to describe instances of the messages themselves. Using an analogy from object-
oriented programming: the schema is related to the concept of a class of an object (for
example, a Java class definition) and the encoding rules would be used to create an
instance of that class or an object.

XML Schema

XML Schema is a recommendation of the World-Wide Consortium (W3C) and would
seem to be the predominant schema in use today to define XML message instances. It
is used in many standards and is also used within Web Services Definition Language
(WSDL) to define the structure of messages for web services communications. Although
other schema languages are in use today for defining XML data, this paper will focus on
XML Schema. It is assumed that the basic principles could be easily applied to other
schema languages as well.

 5

ASN.1

ASN.1 and its associated encoding rules are standards put forth by the ITU-T primarily
for use within the telecommunications industry. These standards have been in place for
nearly twenty years and have been constantly refined and updated over the years. The
initial standards defined the ASN.1 schema language and the Basic Encoding Rules
(BER). There has always been a clear separation between the schema language
(ASN.1) and the encoding rules (BER, DER, PER, etc.).

The ASN.1 schema language has evolved to include such items as relational capabilities
for defining multi-part messages, extensibility mechanisms, and parameterization. New
encoding rules standards have been added over the years including PER and, the latest
edition, XER, which provides an XML representation of ASN.1 data.

Transition Between XML Schema and ASN.1

XML Schema and ASN.1 have many things in common such as a common type system
for defining message data and the concept of various structured containers such as
sequence, choice, and repeating collections (similar to array types in computer
languages). There are also differences as each schema language provides support for
different things that the other lacks.

It is possible to translate between the two formats in either direction. In the case of XML
Schema to ASN.1, a standard is in place (ITU-T X.694 [X694]) that defines a
standardized way of doing this. This provides the migration path necessary for using
ASN.1 encoding rules to produce standardized binary encodings of XML data.

Note that it is not necessary to support both an XML schema and ASN.1 version of a
given specification in order to produce ASN.1 binary encodings. Tools are available that
can do the automatic translation of XML schema to standardized ASN.1. This makes it
possible to base everything off of an XML Schema document and not have to worry
about what the ASN.1 version looks like. In fact, some tools can make the ASN.1 view
of the data totally transparent when producing binary encoders and decoders that use
the ASN.1 encoding rules.

 6

ASN.1 Encoding Rules

It is assumed that anyone reading this paper is already familiar with the concepts of XML
and what the structure of an XML document looks like. Readers may not be familiar with
the structure of messages or documents created using the ASN.1 encoding rules. The
following is a brief summary of the major encoding rule sets.

Basic Encoding Rules (BER)

The Basic Encoding Rules are defined in ITU-T standard X.690 [BER]. The basic
structure of a BER-encoded message is based on “tag-length-value” or TLV for short. A
block view of the simplest BER-encoded message would be as follows:

All of these items are variable-length byte fields. Rules within the X.690 standard
specify how each is constructed.

The TAG is one-or-more binary identifiers (usually one) that uniquely identify the
VALUE. X.680 provides detailed rules on how tags are constructed and applied. These
rules are beyond the scope of this paper, however, a few characteristics that are
applicable to a binary-XML solution are as follows:

1. They are short. A tag length is typically one or two bytes. This would replace the
markup needed in an XML document to identify a data item.

2. A universal set of identifiers is defined within the X.690 standard for all of the
basic data types. This is important because it allows a message to be
interpreted without the aid of a schema (more on this later).

The LENGTH is an integer value that identifies the length of the VALUE. This is
optimized to fit in the smallest number of bytes. A length field may also be “indefinite
length” (denoted by a 0x80 byte) that indicates an indefinite number of VALUE bytes
follow. This stream of data is terminated by a special tag/length value combination
(0x00 0x00) known as an end-of-context (EOC) marker.

The VALUE field is an encoding of the actual data content of the message. What makes
this different from XML is that the value is a binary field rather than a textual field.
Special rules are applied to integer and real values to produce encodings that are both
compact and interoperable. Data that is essentially binary in nature (for example, digital
signatures or images) is transmitted in native form as a stream of bytes. Conversion to
and from textual format is not necessary.

If the simple form of the message described above was all there was to BER, then it
would not be very useful. What makes it useful is the fact that the VALUE component
can contain other TLV’s. This allows recursive structures to be built:

TAG LENGTH VALUE

 7

In this case, the ‘V’ in the outer encapsulating TLV is a set of other TLV’s. The basic
contract of BER is that this recursive structure must be maintained throughout. This
allows basic processing to be applied such as well-formedness checks and validation.
As will be shown later, this is almost identical to the basic contract for XML
encapsulation of data.

Distinguished Encoding Rules (DER)

The Distinguished Encoding Rules are also defined in ITU-T standard X.690 [BER].
Engineers and security architects may be familiar with DER since is used as the base
encoding for Internet security standards such as X.509, PKIX, and PKCS (which at a
higher level encompasses standards such as SSL and SMIME).

DER is almost identical to BER in encoding structure. The only difference is that DER
does not allow any encoding options (i.e. it is canonical, there is only one correct form of
an encoded DER message). In this respect, DER can be thought of as a subset of BER.
A decoder that is capable of decoding BER messages would be able to decode DER as
well. It is only on the encode side where special logic is needed to ensure that the
message is correctly formed.

Canonical Encoding Rules (CER)

The Canonical Encoding Rules are also defined in ITU-T standard X.690 [BER]. Like
DER, this is also a subset of BER that allows a single canonical form. CER is not as
widely used as DER in applications in-use today. However, CER has a property that
may make it more suitable for use in binary-XML applications. That property is the rule
that all constructed component lengths use indefinite length encoding (DER requires
definite lengths). This makes CER both canonical and streamable, two desirable
properties on the list of binary-XML requirements.

Packed Encoding Rules (PER)

The Packed Encoding Rules are defined in ITU-T standard X.691 [PER]. This set of
rules is a departure from the TLV format used in BER/DER/CER. Instead, PER makes
extensive use of information defined in the ASN.1 schema to produce small, efficient
encodings. Tags are eliminated and lengths are only used when they are absolutely
necessary. Fixed length data includes no length identifiers. Variable length fields that
are constrained to a small range use a length determinant that is packed into the
minimum number of bits to define a delta-value from the known base. For example, if a
string is constrained to be between 10 and 12 characters in length, only a 0, 1, or 2

T

L

T L V T L V

 8

value is encoded in two bits and sent over the wire. The receiver is expected to add 10
to this value to determine the actual length.

PER message content is optimized as well in some cases. A boolean value is encoded
in a single bit. Integer value encoding makes uses of constraints on the values to use
the minimal number of bits for a given number (this is much like the length example
above). Permitted alphabet constraints can be used to define restricted character sets
for character data in strings. PER will use these constraints to encode each character in
the minimal number of bits required to represent the character. For example, an XML
schema dateTime type is define in ASN.1 as follows:

DATE-TIME ::= VisibleString (FROM ("0".."9" | "TZ:.+-"))

PER will use the fact that there are only 15 possible characters that can be used in a
date-time specification to produce an encoding that uses 4-bit index values to describe
each possible character in the set.

This extreme efficiency comes with a price. For one thing, encoding is much more
complicated then in the BER case. The concept of extensibility (i.e. producing an
encoding that can be understood using different versions of a specification) requires
special encoding to be done for extension items thus producing two distinct sets of rules.
Also, a PER encoding is totally schema dependent. It is not possible to interpret the
message in any way without knowledge of the schema used to construct it.

XML Encoding Rules (XER)

The XML encoding rules are defined in ITU-T standard X.693. They allow for the direct
encoding of data specified using an ASN.1 schema using XML. Using XER with ASN.1
is the equivalent of using XML with XML schema. The schema language (ASN.1 or XML
schema) defines the structure of the messages and XML is used as the format of the
structured data.

 9

Use of ASN.1 Encoding Rules for Binary XML

In this section, an analysis is done of the two main sets of ASN.1 binary encoding rules
(BER and PER) in terms of how they meet the requirements presented earlier for binary
XML Three common XML documents are used to show the gains in terms of message
size and processing performance that are gained using the ASN.1 rules.

BER / DER / CER

This category of ASN.1 binary encoding rules is the tag-length-value rule set discussed
in the earlier section on BER, DER, and CER. All of these rules are similar and will be
lumped under the general term ‘BER’ for the remainder of this section.

When compared with XML, BER is found to have many similar properties. Both XML
and BER messages have a hierarchal tree-like structure for representing the data. The
following diagram shows a sample XML message and its BER counterpart side-by-side:

 10

XML message (document) BER-encoded message

<personnelRecord>
 <Name>
 <givenName>John</givenName>
 <initial>P</initial>
 <familyName>Smith</familyName>
 </Name>
 <number>51</number>
 <title>Director</title>
 <dateOfHire>19710917</dateOfHire>
 <nameOfSpouse>
 <givenName>Mary</givenName>
 <initial>T</initial>
 <familyName>Smith</familyName>
 </nameOfSpouse>

 <children>
 <name>
 <givenName>Ralph</givenName>
 <initial>T</initial>
 <familyName>Smith</familyName>
 </name>
 <dateOfBirth>19571111</dateOfBirth>
 </children>
 <children>
 <name>
 <givenName>Susan</givenName>
 <initial>B</initial>
 <familyName>Jones</familyName>
 </name>
 <dateOfBirth>19590717</dateOfBirth>
 </children>
</personnelRecord>

0x30 / 0x7B (personnelRecord tag/length)
 0xA0 / 0x10 (Name tag/length)
 0x80 / 0x04 / “John”
 0x81 / 0x01 / “P”
 0x82 / 0x05 / “Smith”

 0x81 / 0x01 / 51
 0x82 / 0x08 / “Director”
 0x83 / 0x08 / “19710917”
 0xA4 / 0x10 (nameOfSpouse tag/length)
 0x80 / 0x04 / “Mary”
 0x81 / 0x01 / “T”
 0x82 / 0x05 / “Smith”

 0xA5 / 0x3E (children tag / length)
 0x30 / 0x1D (child record tag / length)
 0xA0 / 0x11 (name tag / length)
 0x80 / 0x05 / “Ralph”
 0x81 / 0x01 / “T”
 0x82 / 0x05 / “Smith”

 0x81 / 0x08 / “19571111”

 0x30 / 0x1D (child record tag / length)
 0xA0 / 0x11 (name tag / length)
 0x80 / 0x05 / “Susan”
 0x81 / 0x01 / “B”
 0x82 / 0x05 / ”Jones”

 0x81 / 0x08 / “19590717”

As can be seen, the XML and BER-encoded binary records line up rather nicely. As one
would expect, the binary representation is terser and does not contain the clarity of data
expressed in the textual view. But still, it has a structure and can be interpreted to some
degree on its own without the aid of a schema.

Requirements Support

How does BER measure up in terms of the requirements that were presented earlier?
Table 2 provides a summary as to which requirements each set of the encoding rules
supports. BER would seem to cover the set best.

 11

Requirement BER PER
Reduce message (document) size x x
Improved performance x x
Interoperability x x
Self-describing format x
Support streaming transfers x
Random access to data x
SAX / DOM support x
Validation of well-formedness x
Validation against schema x x
Canonical form x x
Free tool support x

Table 2 – BER / PER Support of Requirements

In terms of reduced message size (the first requirement), BER provides substantial
message size reductions. This is mainly because of the following two size-reduction
benefits over textual XML representations:

1. Markup is reduced considerably by replacing start/end tags with binary tag/length
values. This is significant, especially in documents that contain more markup
then content, and

2. Data that is inherently binary (integers, floating point numbers, raw binary data,
etc.) is transmitted either as-is or in a platform independent manner. This is both
smaller and faster then text-based approaches because the size is more
compact and no transformations need to be done.

Probably the most important feature of BER is its self-describing nature. Most other
binary implementations including gzip compression convert the textual data into an
incomprehensible binary form that cannot be understood unless converted back to the
original text. This makes it impossible to do any intermediate processing on a message
without uncompressing and recompressing. It also make troubleshooting very difficult
when things go wrong and an analyst is left with only parts of a message to try and
determine the root cause of a problem.

The self-describing nature also makes compliance with many of the other requirements
possible. Random access to elements within the structure is possible through the use of
combinations of binary tags that can be used as a key to find specific items. It is in
theory possible to create an expression that is similar to an XPath expression but which
uses binary tags instead of element names. The requirements for SAX and DOM-like
processing as well as validation of well-formedness are met in similar ways due the fact
that BER is inherently a tree-like structure.

BER messages are streamable as well. A special feature known as “indefinite length
encoding” makes this possible. This encoding replaces the standard length field (which
is an encoded number) with a special start marker represented as a 0x80 byte. A
decoder would then accept data until a special end-of-context (EOC) marker was

 12

reached. This is represented as a zero byte for both tag and length. A diagram showing
this is as follows:

BER, as was shown earlier, has canonical forms, which is another requirement. The
DER and CER forms both provide no encoding options. There is one, and only one, way
to encode a message using these rules. As also mentioned earlier, the CER form uses
indefinite lengths as described above making it both canonical and streamable.

Finally, many freely available software tools support BER. This is especially true of
viewers/browsers. These tools are essential for working with data in this form. One of
the reasons XML is popular is because it can be easily viewed using any text editor.
There are always going to be times when someone is going to have the need to see
what is in a message. The notion that these binary messages are only going to be
exchanged at the lowest levels of highly optimized systems and that nobody outside of
the people at the endpoints are going to have any need to see or examine them seems
overly optimistic. Tools are required to allow people to view and/or edit these messages.
If the technology is to be ubiquitous across the network, then free tools are necessary to
allow all to participate.

Some examples of free tools that can be used to view BER-encoded data are as follows:

• dumpasn1 by Peter Gutmann [DUMPASN1]

• GUIdumpASN by Gemini Security Solutions [GUIDUMP]

• ASN.1 Editor by Liping Dai [ASN1EDIT]

• ASN.1 Viewer by Objective Systems [ASN1V]

An example of the output generated by one of these tools can be seen in the following
diagram:

TAG 0x80 0x00 0x00stream of data …

indefinite length
marker

EOC marker

 13

Figure 1 – Sample Output from dumpasn1

The numbers on the left are byte offset and length (in bytes) of each item respectively.
The numbers in square brackets represent ASN.1 BER tag values. The keyword
‘SEQUENCE’ is inserted in places where the known UNIVERSAL tag for the ASN.1
SEQUENCE container type exists. As can be seen, this is very similar to XML in
structure.

Possible Extensions to BER

As can be seen, BER does a good job of meeting many of the requirements for a binary
XML solution to some degree. It is important to note that everything discussed above
has already been standardized. This is not a new idea that will take years to develop
and work all of the bugs out of. Systems have been deployed that have used BER for

0 123: SEQUENCE {
 2 16: [0] {
 4 4: [0] 'John'
 10 1: [1] 50
 13 5: [2] 'Smith'
 : }
 20 1: [1] 33
 23 8: [2] 'Director'
 33 8: [3] '19710917'
 43 16: [4] {
 45 4: [0] 'Mary'
 51 1: [1] 54
 54 5: [2] 'Smith'
 : }
 61 62: [5] {
 63 29: SEQUENCE {
 65 17: [0] {
 67 5: [0] 'Ralph'
 74 1: [1] 54
 77 5: [2] 'Smith'
 : }
 84 8: [1] '19571111'
 : }
 94 29: SEQUENCE {
 96 17: [0] {
 98 5: [0] 'Susan'
 105 1: [1] 42
 108 5: [2] 'Jones'
 : }
 115 8: [1] '19590717'
 : }
 : }
 : }

 14

interoperability for the past twenty years. In fact, many of the base security technologies
on the Internet at this time such as X.509 certificates and SMIME make use of this
technology.

It would be possible to extend the standard to fill in the gaps where the requirements are
not fully met. For example, BER tags are cryptic binary tags that carry little information
as to what is actually in the fields they represent. At a simple level, this can be improved
by simply stipulating that universal tags already defined within the X.690 standard be
used in addition to context-level tags to identify all data items. This provides instant
information on the type of binary data defined within each content field. For example, if
an item were tagged with a UNIVERSAL 2 tag, a decoder would know that it contained
an integer value without having to resort to a schema lookup to obtain this information.
These universal tags are something that does not need to be invented – they exist in the
standard for every primitive and constructed (wrapper) type of data element.

However, the way the X.694 standard is set up now causes this information to be
discarded for the most part for the sake of efficiency. It would not be difficult to add an
encoder’s option to specify this additional information be included in a message.

It would also be possible to specify a special metadata record format that would equate
binary tag information with field names and other properties. A possible definition of this
type of record in ASN.1 would be as follows:

XMLMetaData ::= SEQUENCE OF XMLBinTag

XMLBinTag ::= SEQUENCE {
 berTag SEQUENCE OF INTEGER,
 xmlQName UTF8String,
 isAttribute BOOLEAN,
 etc..
}

This could be the first record transmitted in a potentially long sequence of records, for
example, in a database table dump. This would allow a reader to easily reconstruct the
message in XML format without having any advanced knowledge of the schema. It
would also allow all records that follow to be transmitted in an efficient BER-encoded
binary format.

PER

The Packed Encoding Rules (PER) standard differs from BER in that it attempts to
achieve improved compactness by making maximum use of information in the ASN.1
schema in order to use the smallest number of bits possible to represent a given data
value. General characteristics were presented earlier in the overview section, but to
summarize:

• PER does not encode tag values

• PER only encodes lengths when necessary, fixed length variables and variables
that are constrained to be a fixed length (for example, X ::= OCTET STRING

 15

(SIZE(10))) include no encoded length information.

• PER makes use of constraints on items (for example, I ::= INTEGER (5..10)) to
produce further optimized encodings.

There are other properties as well, but these are believed to be the most significant.

Requirements Support

PER in most cases achieves smaller message sizes then BER. However, the cost of
achieving these reductions is lost support for most of the identified requirements. Table
2 provides a summary as to which requirements each set of the encoding rules supports.
As can be seen, PER does not support most of the listed requirements.

In terms of reduced message size (the first requirement), PER in most cases produces
smaller messages then BER. The amount of reduction is very data dependent. Highly
constrained numeric data will achieve significant size reductions over BER. However,
UTF-8 character string data and raw binary octet (byte) data produces no savings.
Character strings with restricted character sets such as those used in a date/time stamp
can be reduced by PER, but in general, these savings are rare. Most character string
content is encoded in native form with no compression.

Metadata is reduced even more in PER because tags are removed and many length
values are reduced, if not eliminated. The cost of this is total dependence on the
schema to determine where everything is. This dependence eliminates perhaps the
most compelling trait of BER – its self-description capabilities.

Without self-description, compliance with many of the other requirements is not possible.
Random access to elements within the structure, SAX and DOM-like processing and
validation cannot be done using the data structure itself. A sophisticated run-time
processor is needed that can link the schema elements to bit fields with the message.

In general, PER messages cannot be sent across a stream-oriented interface the way
BER messages can. The length must be known up front. PER does contain an analog
to BER indefinite length encoding for describing large data blocks, so in theory, it is
possible to stream parts of a PER message. But this would most likely involve breaking
the message into chunks where some chunks must be sent using the known length and
other chunks could be streamed.

PER has a canonical form, so this requirement is met.

Freely available software tools for PER are hard to find. There is the Open H.323
project (http://www.openh323.org) that contains a free PER compiler, but this is geared
towards H.323 applications and does not support most of the broader features of the
syntax. Some tools have PER viewing capabilities built-in for specific protocols (H.323
being the prime example), but there is not much in terms of generic support. We have
not been able to locate a quality, free viewer for PER-encoded messages that accepts a
schema and provides a detailed dump of the bit fields within the message.

 16

Beyond PER

Standardization efforts are now underway at the ITU-T to produce new standards to
address the problem of the verbosity of XML when used in Web Services. The Fast
Web Services [FWS] and Fast Infoset [FIS] standards address these issues. This paper
does not provide an analysis of these new technologies as they are too new and little is
known about them outside of the core working groups. From what can be discerned
from the public postings, it would appear that these are primarily compression
technologies that suffer from many of the same deficiencies described for PER above.
In fact, PER is the encoding rules set used within the new standards. The bottom line is
that these new standards can achieve impressive gains in reducing message sizes to
even smaller levels, but they suffer from many of the disadvantages of PER such as lack
of self-description, streamability, random access, and free tools support.

 17

Benchmark comparisons

Some simple benchmark comparisons were done between messages (documents)
encoded in XML form and in an equivalent binary form using the ASN.1 BER and PER
encoding rules. Messages sizes were compared as well as elapsed times to serialize
and deserialize 10,000 records of each message type.

Three well-known message types were chosen: a simple Employee data record as used
within the ASN.1 standards for examples of the encoding rules, a Universal Business
Library (UBL) Invoice XML document, and an XML digital signature (XMLDSIG)
document.

Employee Data Record

The Employee example was chosen because it is a common data record type found in
many of the ASN.1 standards. The sample instance of this record in XML format that
was used for the benchmark tests is as follows:

 18

<?xml version="1.0" encoding="UTF-8"?>
<personnelRecord xmlns="http://www.obj-sys.com/Employee">
 <name>
 <givenName>John</givenName>
 <initial>P</initial>
 <familyName>Smith</familyName>
 </name>
 <number>51</number>
 <title>Director</title>
 <dateOfHire>19710917</dateOfHire>
 <nameOfSpouse>
 <givenName>Mary</givenName>
 <initial>T</initial>
 <familyName>Smith</familyName>
 </nameOfSpouse>
 <children>
 <name>
 <givenName>Ralph</givenName>
 <initial>T</initial>
 <familyName>Smith</familyName>
 </name>
 <dateOfBirth>19571111</dateOfBirth>
 </children>
 <children>
 <name>
 <givenName>Susan</givenName>
 <initial>B</initial>
 <familyName>Jones</familyName>
 </name>
 <dateOfBirth>19590717</dateOfBirth>
 </children>
</personnelRecord>

Figure 2 – Employee Sample XML Instance

A comparison of the message sizes in XML, BER, and PER formats is as follows:

 19

Employee
0

100

200

300

400

500

600

700

800

900

Employee Record Message Sizes

XML
BER
PERby

te
s

Figure 3 – Employee Record Message Sizes

As can be seen, the XML document size (868 bytes) is almost seven times larger then
the comparable BER-encoded record (125 bytes) and more then eight times larger then
the PER record (93 bytes).

In looking at timings, the time to serialize (encode) and deserialize (decode) a set of
10,000 records is shown below. Times are also shown for SAX and DOM – 2 popular
XML API’s. SAX refers to the time required to execute a set of empty content handlers
(startElement, endElement, and characters callback functions) and can be considered to
be the absolute best time that can be attained using this API. DOM refers to the time
required to deserialize the document to a DOM tree structure. All measurements were
done using test programs written in C and compiled with GNU gcc 3.3.1 on a Dell
Dimension 8100 running SuSE Linux 9.1. The Dell processor speed is 1.6 GHz and it
has 256 MB of memory. Objective Systems ASN.1 and XML tools were used to do the
serialization/deserialization tests and LibXML2 [LIBXML2] was used as the XML parser
for the SAX and DOM tests (and it is also the underlying parser for deserialization).

The timing results are as follows:

 20

Serialize Deserial-
ize

SAX DOM
0

200

400

600

800

1000

1200

1400

1600

1800

Employee Record Timings

XML
BER
PER

m
ill

is
ec

on
ds

Figure 4 – Employee Record Timings

This shows that serialization times are comparable, although BER/PER does hold an
advantage. Deserialization times are more striking. The time to deserialize using BER
or PER is only a small fraction of the time required for XML. Even for SAX – considered
the fastest XML API – with empty handlers, the relative time required was 10x more.

It is also significant that the LibXML2 XML parser was used for these tests. An
independent study [XMLBENCH], found it to be one of the best performing XML parsers
(open source or commercial) available at this time.

For the record, the times to (de)serialize between BER and PER were almost identical.
BER was found to be slightly faster, but only on the order of a few milliseconds.

UBL Invoice

 21

Similar tests were done on a UBL invoice XML document. The characteristics of this
record that made it interesting are:

a. it is much larger (~8k bytes) as opposed to the employee record, and
b. it contains a large amount of heavily nested markup text (XML tags and

attributes)

A chart showing the message sizes of text and binary forms is as follows:

UBL Invoice
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500

XML
BER
PER

by
te

s

Figure 5 – UBL Invoice Message Sizes

Once again, there is an approximately 8x difference between XML and the binary
encodings. PER is again slightly smaller then BER.

The timing chart is as follows:

 22

Serialize Deserial-
ize

SAX DOM
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

UBL Invoice Timings

XML
BER
PER

m
ill

is
ec

on
ds

Figure 6 – UBL Invoice Timings

Results are similar to the Employee case except that SAX processing is closer in time
binary deserialization than in the other case.

XML Digital Signature

The final document type tested was an XML digital signature document. This was found
to be interesting because the record exists of inherently binary data that is turned into
base64 for use in an XML document. The document that was tested is as follows:

 23

<?xml version="1.0" encoding="UTF-8"?>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315" />
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1" />
 <Reference URI="http://www.w3.org/TR/xml-stylesheet">
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <DigestValue>60NvZvtdTB+7UnlLp/H24p7h4bs=</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>
 LaL1/t/XodYvDJDgSEbq47GX8ltnlx3FFURdi7o+UFVi+zLf0WyWaQ==
 </SignatureValue>
 <KeyInfo>
 <KeyValue>
 <DSAKeyValue>
 <P>
 3eOeAvqnEyFpW+uTSgrdj7YLjaTkpyHecKFIoLu8QZNkGTQI1ciITBH0lqfIkdCH
 Si8fiUC3DTq3J9FsJef4YVtDF7JpUvHTOQqtq7Zgx6KC8Wxkz6rQCxOr7F0ApOYi
 89zLRoe4MkDGe6ux0+WtyOTQoVIGNTDDUFXrUQNbLrE=
 </P>
 <Q>
 hDLcFK0GO/Hz1arxOOvsgM/VLyU=
 </Q>
 <G>
 nnx7hbdWozGbtnFgnbFnopfRl7XRacpkPJRGf5P2IUgVspEUSUoN6i1fDBfBg43z
 Kt7dlEaQL7b5+JTZt3MhZNPosxsgxVuT7Ts/g5k7EnpdYv0a5hw5Bw29fjbGHfgM
 8d2rhd2Ui0xHbk0D451nhLxVWulviOSPhzKKvXrbySA=
 </G>
 <Y>
 cfYpihpAQeepbNFS4MAbQRhdXpDi5wLrwxE5hIvoYqo1L8BQVu8fY1TFAPtoae1i
 Bg/GIJyP3iLfyuBJaDvJJLP30wBH9i/s5J3656PevpOVdTfi777Fi9Gj6y/ib2Vv
 +OZfJkkp4L50+p5TUhPmQLJtREsgtl+tnIOyJT++G9U=
 </Y>
 </DSAKeyValue>
 </KeyValue>
 </KeyInfo>
</Signature>

Figure 7 – XML Digital Signature Document

In this document all of the element content is base64-encoded data. It also contains
some textual attribute variables to specify various URI’s. Overall, the amount of markup
is quite a bit less then the other records.

The record size and timing results using the same methodologies as above are as
follows:

 24

XMLDSIG
0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600

XML
BER
PER

B
yt

es

Figure 8 – XML Digital Signature Message Sizes

In this case, the message size differences are not as dramatic. The size of a binary
message is roughly half that of its XML counterpart. This can be attributed to the fact
that the XMLDSIG XML document contained relatively little markup. Most of the savings
were because of direct use of binary data for the base64 encoded fields.

The timing results were as follows:

 25

Serialize Deserial-
ize

SAX DOM
0

200

400

600

800

1000

1200

1400

1600

1800

XML
BER
PER

m
ill

is
ec

on
ds

Figure 9 – XML Digital Signature Timings

As in the other cases, deserialization gains are most impressive, in this case achieving
almost a 20x reduction. This is due to the combination of not having to deal with the
XML markup as well as not having to do the binary data transformation to and from
Base64 encoding.

 26

Conclusion

XML has become a widely adopted data format standard mainly because it is simple and
easy to understand and because of its self-descriptive qualities. A standardized binary
format for XML should strive to achieve these same qualities while at the same time
reducing the verbosity of XML. This paper has provided arguments that the Basic
Encoding Rules of ASN.1 do just that. They provide a structured message format that is
similar in basic qualities to XML but that provides compactness in two basic ways:

1. Reducing metadata by replacing bulky textual start/end tags with binary
tag/length pairs, and

2. Allowing inherently binary content to be transmitted in binary form rather then as
text

It was shown that these two items provide reasonable compactness and increased
processing performance while at the same time preserving many of the basic structural
features that make XML attractive. Free software tools that allow easy viewing of the
contents of BER-encoded documents were also introduced.

Lessons learned from past standardization efforts such as CORBA have shown that the
idea that what is on the wire does not matter and can be hidden using sophisticated
API’s does not work. HTML through its “view source” principal has laid the groundwork
for how things are done today. XML is building on this success. An attempt to
standardize a binary version of XML should not ignore these lessons. Technologies that
turn messages into incomprehensible masses of bits through compression or other
means are not likely to achieve widespread use unless ubiquitous free tool support can
be attained (for example, gzip). Otherwise, the vast majority of potential users will turn
away and tolerate slower, text-based solutions instead of a more efficient – but more
complicated – binary solution.

 27

References

[ASN1] ITU-T Recommendation X.680 (07/2002) –
Abstract Syntax Notation One (ASN.1): Specification of basic notation

[ASN1EDIT] ASN.1 Editor by Liping Di
http://www.codeproject.com/csharp/Asn1Editor.asp

[ASN1V] ASN.1 Viewer
http://www.obj-sys.com/asn1viewer.shtml

[BER] ITU-T Recommendation X.690 (07/2002) –
ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER), and Distinguished Rules (DER)

[DOM] World Wide Web Consortium – Document Object Model (DOM)
http://www.w3.org/DOM/

[DUMPASN1] ASN.1 Object Dump Utility by Peter Gutmann
http://www.cs.auckland.ac.nz/~pgut001

[FIS] Fast Infoset
http://java.sun.com/developer/technicalArticles/xml/fastinfoset/

[FWS] Fast Web Services
http://java.sun.com/developer/technicalArticles/WebServices/fastWS/

[GUIDUMP] GUI version of ASN.1 Object Dump Utility
http://www.geminisecurity.com/guidumpasn.html

[GZIP] GNU zip compression utility
http://www.gzip.org/

[LIBXML2] The XML C Parser and Toolkit of Gnome
http://xmlsoft.org

[PER] ITU-T Recommendation X.691 (07/2002) –
ASN.1 encoding rules: Specification of Packed Encoding Rules (PER)

[SAX] Simple API for XML
http://www.saxproject.org/

[X694] ITU-T Recommendation X.694 (01/2004) –
ASN.1 encoding rules: mapping W3C XML schema definitions into ASN.1

[XPATH] World Wide Web Consortium – XML Path Language (XPath) Version 1.0
http://www.w3.org/TR/xpath

[XSD] World Wide Web Consortium – XML Schema 1.0

 28

http://www.w3.org/XML/Schema#dev

[XMLBENCH] XML Benchmark Results 08.02.2004
http://xmlbench.sourceforge.net/results/benchmark200402/index.html

