objective
SYSTEMS, INC.

ASN2CSV

Version 2.1.0

Objective Systems, Inc. — July 2010

The software described in this document is furnished under a license agreement and may be used only in accordance
with the terms of this agreement.

Copyright Notice

Copyright ©1997-2010 Objective Systems, Inc. All rights reserved.

This document may be distributed in any form, electronic or otherwise, provided that it is distributed in its entirety and
that the copyright and this notice are included.

Author’s Contact Information
Comments, suggestions, and inquiries regarding this product may be submitted via electronic mail to info@obj-
sys.com.

Table of Contents

OVEIVIEBW Of ASNZ2CSV .ttt ettt ettt e sb e e te e st e s be e besneesreentesneesneenseas 1
USING ASNZCSV ettt et et st e bt et e e st e sbeeneesaeesaeenseeseesbeentesneesseenseaneenseas 3
LS =1 = o o P 3
Installing 0N @ WIiNAOWS SYSEEIMcueiiiiieieeie e 3

Installing 0N @ UNIX SYSEEM ... e 3
CommMaNd-1iNE OPLIONSooiuiiieieeie et sreesee st esneeneeeneas 3
LS A1 - = RS 6
Type Mappings and Data CONVEISIONccceiiriereeieeie e sieeeeseesee e ssee e s eesseesseesesseesseseesnes 9
MapPING TOP-LEVE TYPES ..ottt sttt sre et e e ne e 9
MaPPING SIMPIE TYPES ..ot se et re et st sreene e e sneeneas 10
MapPING COMPIEX TYPES ...ueeeeeeieeeieeiestee e eeesteestesee st e seeseesreesesseesseesseeneesseenseeneesseenseeneas 11

(04 [TR 12

Basic SEQUENCES aNd SETScooiiiiiieieeeseee et 12

Nested SEQUENCES and SETScooiiiiiiieeee et 13

(D= 6= W 000177 £ Lo o PSP 15
SEQUENCE OF in @ SEQUENCEooiiiieceeeee e 15

Other NeSted Data TYPES ...cveeeerieeiereerieeie e sie e e seesseeeeseesreeseesseesaeeeesseesseeneesneees 16
OPTIONAL and DEFAULT EI@MENtSc.ocviieeeieeseee e 16

Overview of ASN2CSV

ASN2CSV isacommand-line tool that translates ASN.1 data encoded in the Basic, Canonical, or
Distinguished Encoding Rules (BER/CER/DER) to acomma-separated text format (CSV) suitable
for use with spreadsheet tools or databases. Unlike some tools provided by Objective Systems,
ASN2CSV does not support messages encoded using the Packed Encoding Rules (PER).

ASN2CSV isenvisioned primarily as atool for working with call datarecords (CDRs) in avariety
of formats such as TAP3, SGSN, R12, CCN, SR13, and others. It therefore does not support more
advanced features of the ASN.1 standards such as two-phase decoding or information objects.

There exists no standard for converting ASN.1-encoded datato CSV. BER, CER, and DER data
are encoded in ahierarchical format that lends itself to translation to similar formats such as XML.
CSV, on the other hand, isflat dataformat: there are no structured types or children, and all datain
aCSV fileare displayed on single lines. This complicates the translation of ASN.1to CSV, since
structured data types like SEQUENCES can be nested to an arbitrary depth or repeated an arbitrary
number of times.

While these limitations make conversion a difficult problem, CSV offers some advantages over
XML. CSV files are usualy considerably smaller than XML, since no markup is necessary to
distinguish elements. Many databases import CSV data directly into tables, so no intermediate
transformations are required. CSV files are also easier to manipulate procedurally; no external
XML parsers are required to read the files, and many scripting languages have built-in facilities
for working with comma-delimited data.

This document describes some of the unique challenges of transforming ASN.1-encoded data to
CSV and the approach taken by ASN2CSV to solve those problems.

Using ASN2CSV

Installation

ASN2CSV comes packaged as an executable installation program for Windows or a .tar. gz
archive for UNIX systems. The package is comprised of the following directory tree:

asn2csv_v21x

+-asnlspecs

+-bin

+-doc

+- sanpl e

The bi n subdirectory contains the asn2csv executable. The asnispecs directory contains specifi-
cations used by the sample programs in the sanpl e directory. This document is found in the doc
directory.

Installing on a Windows System

Toinstall ASN2CSV on aWindows system, simply double-click the executableinstaller program.
Selecting the default installation options will install ASN2CSV inc:\ asn2csv_v21x.

Thereis no graphical user interface available for use with ASN2CSV; the program is intended to
be run from the command-line, either as a stand-alone application or as part of a batch process for
converting BER-encoded datato CSV.

Installing on a UNIX System

Toinstall ASN2CSV onaUNIX system, simply unzip and untar the. t ar . gz archive. The program
may be unpacked in any directory in which the user has permissions. No installation program is
availableto install ASN2CSV to/usr/1 ocal or other common installation paths.

There is no graphical user interface available for use with ASN2CSV; the program is intended to
be run from the command-line, either as a stand-alone application or as part of abatch process for
converting BER-encoded datato CSV.

Command-line Options

Invoking asn2csv will show a usage message that contains the command-line options. The usage
statement should look like this:

Command-line Options

ASN2CSV, Version 2.1.x
ASN. 1 to CSV translation too

Copyright (c) 2004-2010 Onjective Systens,

Usage: asn2csv <fil ename> options

<fil ename>

opti ons:
-schema <fil enane>
- pdu <typenane>
-0 <fil enane>
-nobcd
- noopent ype
- paddi nghyt e <hexbyt e>
-root El enent <el enent >
-bitsfm <hex| bin>

Addi ti onal
Root

El enent
BI T STRI NG content output fornat

Inc. All Rights Reserved

ASN. 1 nessage file nane

ASN. 1 definition file nanme(s)
Message PDU type nane
Qut put XML fil ename
Di sabl e BCD conver si on
Di sabl e automatic open type decodi ng

paddi ng byte
Narme

-input Fi | eType <bi nary| hext ext | base64>
Format of data in input file

-s <separator>
-m nLevel <nunp
-maxLevel <nunp

-q

Fi el d separator
Set the m ni num out put depth
Set the maxi mnum out put depth

Turn off al

out put except errors

The following table summarizes the command-line options. Required elements are listed first.

Option Arguments

Description

<filename>

<fi | ename> isthe name of the input BER-encod-
ed message data to be decoded. This element is
required.

-schema <filename>

This option is required. Us must specify
a schema to apply to the input message.
ASN2CSV converts the input schema items in-
to a set of named columns and cannot name the
columns without an input specification.

-bitsfmt <hex | bin>

- bi t sf mt may be used to specify how BI T STRI NG
items are formatted. By default they are ex-
pressed as hexadecimal strings; use bin to ex-
press them as binary strings instead.

-inputFileType |<binary | hextext | base64>

-i nput Fi | eType may be used to tell ASN2CSV
how the input data are formatted. By default
ASN2CSV will assume that the input data are
binary, but it can also decode hexadecimal or
base64 encoded data. Whitespace in the input is
ignored when hext ext S specified.

-maxLevel <level>

By default, all entrieswill be dumped to the out-
put file. Deeply-nested types may result in ex-
cessive output, however. The - maxLevel Switch

Command-line Options

Option

Arguments

Description

causes ASN2CSV to stop outputting data after
<level> levels have been processed.

-minLevel

<level>

Similar to the - maxLevel option, the - i nLevel
option will cause ASN2CSV to skip outputting
top-level datatypes<i evel > levels deep.

-nobcd

This option disables the conversion of BCD da-
tatypesin the output. It is used for the common
TBCD- St ri ng data type. TBCD digits are encod-
ed in swapped byte order and use a oxf digit to
terminate the string. When this option is select-
ed, theinput data are treated as OCTET STRI NGS.

-noopentype

This option disables the conversion of open
typesin the CSV output. Typically

-paddingbyte

<hexbyte>

<hexbyt e> isthe hexadecimal value of apadding
byte that may appear in the input message. Call
datarecords (CDRs) are commonly continuous-
ly dumped to files by telephony equipment. If no
informationisavailable, therecordsare padding,
normally by Ox00 or OxFF bytes. The default
padding byte is0x00. <hexbyt e> may be format-
ted with or without aox prefix.

-pdu

<typename>

<t ypenane> iS the name of the PDU data type to
be decoded. This option is necessary when the
top-level datatype is ambiguous.

This option causes ASN2CSV to operate in a
"quiet" mode more suitable for batch processes.
Informational messages are limited and only er-
ror output will be reported.

<separator>

By default, ASN2CSV assumes the record sep-
arator will beacomma. When this conflictswith
output data (for example, a field may consist
of Gity, state), users may use the -s switch
to specify a different separator such as a tab or
pipe. Enclosing the separator in quotation marks
is necessary when using a tab or other whites-
pace character.

Filtering Data

Filtering Data

As explained in the following chapter, Type Mappings and Data Conversion, the use of nested
and repeating data types can result in output files with large numbers of columns and rows. The
-ninLevel and -maxLevel command-line options are used to create vertical dlices from an input
datafile.

The following exampl e specification demonstrates how these options work to reduce the output:

A ::= SEQUENCE {
a | NTEGER,
b SEQUENCE OF SEQUENCE {
bb VisibleString,
cc CHO CE {
aaa | NTEGER
bbb SEQUENCE OF BOOLEAN

}
}
}

Without using any command-line filtering options, the output columns will ook like this:

a, bb, aaa, bbb

Theinnermost SEQUENCE oF typewill cause afull tupleto be added to the CSV filefor each message.
If the bbb element were repeated ten times, the outer elements would be duplicated ten times for
each BOOLEAN.

If, in the same message, the outer SEQUENCE OF (that is, the b element) were repeated three times,
the outer | NTEGER, a, would be repeated 30 times. This kind of duplication may be unnecessary
depending on the content of interest, so the ni nLevel and naxLevel options may be used to control
the output.

The duplication of data at the outer level may be controlled using the i nLevel option. If for ex-
ample, the minimum level were set to one (- mi nLevel 1), the outer | NTEGER would be eliminated:

bb, aaa, bbb

The duplication of data in the inner levels may be controlled using the naxLevel option. If, for
example, the maxLevel were set to one (- maxLevel 1), the inner cHa ce would be eliminated:

a, bb

By combining the options, we can reduce the output to a single column of data (- i nLevel 1 -
maxLevel 1):

Filtering Data

bb

In this way the data of interest may be isolated in the input messages and the output considerably
reduced.

Type Mappings and Data Conversion

Converting ASN.1 typesto CSV output isnot alwaysvery straightforward. It isakinto normalizing
a database, except that there is only one table. For complex types, it is necessary to duplicate
information across several rows.

No standards currently exist for converting ASN.1to CSV. This chapter describeshow ASN2CSV
has attempted to answer the problemsthat naturally arise from trying to compress nested BER data
to aflat datafile.

We may divide conversion into roughly two steps. collecting the column headers and then out-
putting the column data. Header information comes from parsing the input specification, while the

column data are found in the actual encoded content. This documentation is primarily concerned
with how the column headers are collected.

Mapping Top-Level Types

PDU data types ae stored in their own CSV files, usuadly of the form
Modul eNare_Pr oduct i onNane. csv. There are three main top-level datatypes of interest:

®* SEQUENCE / SEQUENCE OF
e SET / SET OF
* CHO CE

For all intents and purposes, the list types (SEQUENCE and SeT ©oF) are the same as the unit types.
The content is repeated when needed on multiple rows of the CSV file,

Simple types may be used as top-level data types, but in practice thisis rare. Trandation in this
case proceeds as described in the following sections.

As an example, the following SEQUENCE would be dumped to M/Modul e_Typel. csv:

MyModul e DEFINITIONS ::= BEG N
Typel ::= SEQUENCE {

} C

END

If the input file type had two such seQUENCES, the resulting files would be MyModul e_Typel. csv and
MyModul e_Type2. csv.

Mapping Simple Types

When a cHa ce is used as the top-level data type, the typename for the cHal ce isignored and the
files are generated using the typenames in the cHa ce. For example, the following specification
would generate the same output as the one with two top-level seQUENCES named Type1 and Type2:

MyModul e DEFI NI TI ONS AUTOVATI C TAGS ::= BEG N
Typel ::= SEQUENCE {
}
Type2 ::= SEQUENCE {
}
PDU ::= CHO CE {
tl Typel,
t2 Type2

When a seQUENCE or SET oF type is used as the top level, the underlying unit type is referenced
instead. For example, thefollowing ASN.1 specification would create thefile yyModul e_Typel. csv:

M/Modul e DEFI NI TIONS ::= BEG N
Typel ::= SEQUENCE {

} .

PDU :: = SEQUENCE OF Typel

END

In this case, the pDu type carries no extrainformation for outputting the data; the contents of Type1
are outputted on separate lines.

One of the implications of this kind of trandation is that the message structure cannot be recon-
structed from the output datafiles. A top-level datatype of acHa CE, SEQUENCE, OF SEQUENCE OF may
result in exactly the same output files, even though the bytes of the message may differ. Such ambi-
guity should not cause any problems since a specification isrequired for decoding the ASN.1 data.

Mapping Simple Types
Simpletypesin ASN.1 consist of the following:
« BOOLEAN

* INTEGER

* BIT STRING

10

Mapping Complex Types

* OCTET STRING
 NULL

* OBJECT IDENTIFIER
* REAL

« ENUMERATED
» UTF8String

* RELATIVE-OID
* NumericString

* PrintableString
» TeletexString

* VideotexString
* |A5String

* UTCTime

» GeneralizedTime
» GraphicString

» VisbleString

» General String

Each simple type is mapped to a corresponding string representation of the input data. Thisis a
relatively straightforward conversion. Of special note, we use the BooLEAN values "TRUE" (for
any hex octet not equal to oxo0) and "FALSE" (for any hex octet equal to 0x00). NULL values are
outputted simply as"NULL."

Simple type mappings require no extralogic for output. Their textual representations are generally
quite straightforward. Mapping complex types, however, is more difficult.

Mapping Complex Types
Complex types of interest include the following:

+ SEQUENCE

11

CHOICEs

» SEQUENCE OF
o« SET

» SET OF

« CHOICE

Complex types by their nature are more difficult to transform than simple types. They can be self-
referential and nested, which complicates transformation. CSV is a flat file format that cannot
properly represent nested typesin afixed number of columns, so care must betaken in transforming
thedatato ensurethat it isproperly represented. Thisprocessisvery similar to afirst-order database
normalization.

CHOICEs

As explained in the previous section (Mapping Top-level Types), the cHa cE at the top level is
effectively ignored: the elements of the cHa ce are used to generate the output of afileinstead. In
the routine case where the cHa ce is contained in another data type or stands alone, the mapping
isdlightly different.

Take for example the following cHa ce:

C ::= CHO CE {
i | NTEGER,
b BOOLEAN,
S UTF8Stri ng

The elements contained in the cHa ce will be used as the column names. The name of the cHa ce
itself will be ignored. The resulting column names from this example would look like this:

i,b,s

Basic SEQUENCEs and SETs

This section describes the transformation of SEQUENCE data types. The seT data type is analogous
to the seQueNCE and so bears no extra discussion. As described in previous sections, the SEQUENCE
oF and seT oF types are likewise equivalent.

The only significant difference between seQUENCE and seT is that el ements may be encoded in any
order in aset. ASN2CSV will order seT elements in the order they appear in the specification.

The seQuENcEes considered in this section contain only simple types to simplify the collection of
header data. Other cases are considered in the next sections.

12

Nested SEQUENCEs and SETs

Take, for example, the following seQUENCE specification:

S ::= SEQUENCE {
i | NTEGER
S UTF8Stri ng,
b BI T STRI NG

Each element of the seQuENcE will be represented by an item in the output CSV file as follows:

Nested SEQUENCEs and SETs

When a seQUENCE or SET contains other complex data types, it is said to be nested. Types may be
nested to an arbitrary depth in ASN.1, so the resulting output can be extremely verbose in complex
specifications. Moreover, these nested types can be repeating.

The following sections will describe how ASN2CSV handles nested (and occasionally patholog-
ical) specifications. The general rule is that ASN2CSV will do its best to flatten the structure of
nested data types.

For al intents and purposes, a SEQUENCE is exactly the same as a seT to ASN2CSV;; the two types
are used interchangeably in the following sections.

SEQUENCE in a SEQUENCE

Oneform of nested data occurswhen a SEQUENCE type contains another, asin thefollowing example:

A ::= SEQUENCE {
a | NTEGER,
b SEQUENCE { aa | NTEGER, bb BOOLEAN },
c BIT STRI NG

In this case, the following columns would be generated in the output CSV:

a, aa, bb, c

ASN2CSV removes all references to the SEQUENCE named b. Instead, the inner data (aa and bb) is
collapsed into the main data type. It is as though we have instead provided the following specifi-
cation:

A ::= SEQUENCE {

13

Nested SEQUENCEs and SETs

a | NTEGER,
aa | NTEGER,
bb BOCLEAN,
b BIT STRI NG

While the BER encoding of the two specificationsis different, they are functionally equivalent to
ASN2CSV.

CHOICE in a SEQUENCE

When acHa ce appearsin a SEQUENCE, each of the elementsin the cHa ce isrepresented in the output
CSV file, even though only one will be selected in any given message.

For example, take the following specification:

A ::= SEQUENCE {
a | NTEGER,
b CHO CE { aa INTEGER, bb BOOLEAN },
c BIT STRING

The resulting columns will appear as though the cHa ce were actually a SEQUENCE:

a, aa, bb, c

SEQUENCE OF in a SEQUENCE

The last data type to consider is the seQuENcE oF. Thisis handled very much like a SEQUENCE: the
SEQUENCE OF isignored and its contents are represented for the column headers asin the following
example:

A ::= SEQUENCE {
a | NTEGER,
b SEQUENCE OF | NTEGER,
c BIT STRI NG

In this case, the columns will be straightforwardly trand ated:

a, b, c

It is possible that the repeated data type is not primitive, but rather complex. For example:

14

Data Conversion

A ::= SEQUENCE {
a | NTEGER,
b SEQUENCE OF SEQUENCE {
aa | NTEGER,
bb BOCOLEAN

b
c BIT STRING

In this case, the innermost data are represented in the output CSV files, but the actual SEQUENCE
oF will be ignored as before:

a, aa, bb, c

The exact same columns would be represented if a cHo ce were used instead of a SEQUENCE. In the
final analysis, ASN2CSV will always do its best to collapse nested datatypes, drilling down to the
innermost data to collect the column headers.

Data Conversion

Having collected column headers for the output CSV, the second and final step is to output the
actual data from the decoded BER message. Fortunately thisis considerably more straightforward
than collapsing the data structures in the specification.

The main case to consider is that in which data types are repeated: when a SEQUENCE CF is nested
inside of a seQUENCE. Some brief comments follow for other nested data types.

SEQUENCE OF in a SEQUENCE

Take for example the simple case previously seen:

A ::= SEQUENCE {
a | NTEGER
b SEQUENCE OF | NTEGER,
¢ BIT STRING

Let us assume for sake of argument that there are two integers in the inner sEQUENCE ©F. In this
case, the resulting CSV file will have two rows in addition to the header row.

The common data, columns a and ¢, will be repeated, while the repeated element b will change.
For example:

a, b, c
1, 97823789324, 010010

15

Other Nested Data Types

1, 18927481, 010010

The data represented by the seQUENCE oF are different from row to row, but the common elements
are duplicated. While this example is very simple, it is possible to nest data types to an arbitrary
depth, and the representation of columnsand their data can be quitelarge. In pathol ogical instances,
the CSV output may be larger than the output generated by other tools like ASN2XML.

Other Nested Data Types

The other nested data types, SEQUENCE and cHal CE, arerelatively trivial to convert once the columns
have been assembled as described in the previous section. A single row may be used to output a
message without repeating types.

The cHa ce data type bears some explanation. The following specification is the same used in the
previous section:

A ::= SEQUENCE {
a | NTEGER,
b CHO CE { aa |INTEGER, bb BOOLEAN },
c BIT STRI NG

Some example output data follows:

a, aa, bb, c
1, , FALSE, 101010
2,137,,100001

The output lineswill contain datain either the aa or bb but not both. Only the selected data should
be represented in the output line.

OPTIONAL and DEFAULT Elements

Optional primitive elements that are missing in an input message will result in ablank entry in the
output CSV file. Take, for example, the following specification:

A ::= SEQUENCE {
a | NTEGER,
b UTF8String OPTI ONAL,
¢ BIT STRI NG

This might result in the following output:

16

OPTIONAL and DEFAULT Elements

a, b, c

1,test string, 100100
2,,100101

3, anot her test, 100100

In this example, the second message does not contain the optional uTFsstring element, so it is
omitted from the output.

Elements marked perauLT are handled differently in the output. If an element ismissing in theinput
specification, the default value is copied into the output CSV file. The following specification is
used to demonstrate:

A ::= SEQUENCE {
a | NTEGER
b UTF8String DEFAULT "test",
c BIT STRING

In this case, we might have the following output:

a, b, c

1,test string, 100100
2,test, 100101

3, anot her test, 100100

Like the previous example, the input data omitted the default utrsst ri ng. Instead of ablank entry,
however, the output CSV data containst est .

17

18

