

H.323 Framework for C

PER Encode/Decode API
User’s Guide

Objective Systems, Inc. April 2005

Introduction

The H.323 Framework for C PER Encode/Decode API is a package of functions for encoding and decoding
messages from the H.323 ASN.1 specifications using the Packed Encoding Rules (PER) as defined in ITU
standard X.691. H.323 is an ITU Recommendation describing the protocols involved in making a call with
multimedia capabilities over a packet-based network without guaranteed QoS.

This API has been developed in the C programming language. The Objective Systems ASN1C compiler
was used to generate the initial structures and encode/decode functions. The final package is comprised of
ANSI standard C code and/or binary libraries that can be ported to a wide-range of operating environments
(including embedded).

Installation

The evaluation version of this package is an add-on to an existing ASN1C compiler installation. It is
therefore necessary to have ASN1C installed before installing this package. An ASN1C evaluation version
may be obtained from http://www.obj-sys.com.

The steps to install this package are as follows (note: in all of these steps, the ASN1C version number is
assumed to be 573. If you are using a different version of ASN1C, substitute the version number you are
using).

1. Unzip this package in the 'c' subdirectory of the ASN1C installation. For example, if ASN1C is
installed in the 'c:\acv573' directory, unzip this package in the 'c:\acv573\c' subdirectory (note: for
Linux or UNIX, the base directory name would be of the form ‘asn1c-v573’, in this case the
package should be unpacked into the ‘asn1c-v573/c’ subdirectory).

2. Open a terminal window. (On Windows, go to ‘Start -> Accessories -> Command Prompt’ to get a

terminal window).

3. Change directory to the 'h323fw/src’ subdirectory:

On Windows: cd c:\acv573\c\h323fw\src

On Linux/UNIX : cd asn1c-v573/c/h323fw/src

4. Execute the make utility to compile the specifications.

On Windows, the Visual Studio nmake tool can be used.

(note: nmake is a make utility program that comes with the Microsoft Visual C++ compiler. It may
be necessary to execute the batch file vcvars32.bat that comes with Visual C++ in order to set up
the environment variables to use this utility).

On Linux/UNIX, the standard make utility can be used.

5. The H.323 specifications should now be compiled and the results stored in the h323.lib library in

the lib subdirectory. Note that this is a single-threaded static library. Other library configurations
(static multi-threaded or DLL) will require modifications to the build procedure.

6. You can test out linking and execution by executing the sample programs in the sample

subdirectory.

Contents of the Package

The following diagram shows the directory tree structure that comprises the H.323 PER encode/decode
package:

 h323fw
 |
 +- doc
 |
 +- lib
 |
 +- src
 |
 +- specs
 |
 +- sample
 |
 +- h323_ras
 |
 +- h323_ui

The purpose and contents of the various subdirectories are as follows:

• doc – this directory contains this document as well as the H.323 Introduction

• lib – this directory contains the resulting H.323 run-time library after the generated code is
compiled. Applications would need to be linked with this run-time library as well as the base run-
time libraries contained within the ASN1C package.

• src – this directory contains all of the ASN1C compiler generated C source files

• specs – this directory contains the H.323 ASN.1 specifications

• sample – this directory contains sample programs that show how to use the API.

Getting Started

Once the library is installed, the encode/decode functionality can be tested by running the sample programs.
Each sample program contains a reader and a writer program. The sample is built by executing the
makefile in the sample subdirectory. The writer program can then be executed to populate a test data
structure, encode the data, and then writer the corresponding encoded binary data to a disk file. The reader
program can then be executed to read the file and decode the record.

The following sections provide greater detail on the procedure of encoding and decoding H.323 packets.

Encoding H.323 Packet Structures

This section describes to procedure to encode different types of H.323 messages.

Encoding a RAS Message

RAS (Registration, Admissions, and Status) messages are one class of H.323 messages. These messages
are used in cases where H.323 endpoints within a H.323 zone are moderated by a H.323 Gatekeeper. RAS
messages occur between endpoints and a gatekeeper to provide registration, admission, and status functions
for endpoints within zones. The ASN.1 definition for a RAS message is as follows:

RasMessage ::= CHOICE
{
 gatekeeperRequest GatekeeperRequest,
 gatekeeperConfirm GatekeeperConfirm,
 gatekeeperReject GatekeeperReject,
 registrationRequest RegistrationRequest,
 registrationConfirm RegistrationConfirm,
 registrationReject RegistrationReject,
 unregistrationRequest UnregistrationRequest,
 unregistrationConfirm UnregistrationConfirm,
 unregistrationReject UnregistrationReject,
 admissionRequest AdmissionRequest,
 admissionConfirm AdmissionConfirm,
 admissionReject AdmissionReject,
 bandwidthRequest BandwidthRequest,
 bandwidthConfirm BandwidthConfirm,
 bandwidthReject BandwidthReject,
 disengageRequest DisengageRequest,
 disengageConfirm DisengageConfirm,
 disengageReject DisengageReject,
 locationRequest LocationRequest,
 locationConfirm LocationConfirm,
 locationReject LocationReject,
 infoRequest InfoRequest,
 infoRequestResponse InfoRequestResponse,
 nonStandardMessage NonStandardMessage,
 unknownMessageResponse UnknownMessageResponse,
 ...,
 requestInProgress RequestInProgress,
 resourcesAvailableIndicate ResourcesAvailableIndicate,
 resourcesAvailableConfirm ResourcesAvailableConfirm,
 infoRequestAck InfoRequestAck,
 infoRequestNak InfoRequestNak,
 serviceControlIndication ServiceControlIndication,
 serviceControlResponse ServiceControlResponse
}

The user should use the test programs in the H.323 tests directory (h323fw/tests/h323_ras) as a guide when
reading the rest of the procedure.

To encode a RAS message, a variable of the ASN1T_H225RasMessage C structure must first be populated
with data. This structure is as follows:

typedef struct EXTERN ASN1T_H225RasMessage {
 int t;
 union {
 /* t = 1 */
 ASN1T_H225GatekeeperRequest *gatekeeperRequest;
 /* t = 2 */

 ASN1T_H225GatekeeperConfirm *gatekeeperConfirm;
 /* t = 3 */
 ASN1T_H225GatekeeperReject *gatekeeperReject;

.

.

.
 /* t = 33 */
 ASN1TOpenType *extElem1;
 } u;
} ASN1T_H225RasMessage;

This structure has two fields: t and u. The t field is defined as follows:

#define T_H225RasMessage_gatekeeperRequest 1
#define T_H225RasMessage_gatekeeperConfirm 2
#define T_H225RasMessage_gatekeeperReject 3
.
.
.
#define T_H225RasMessage_extElem1 33

This is a choice of many alternatives: gatekeeperRequest, gatekeeperConfirm, gatekeeperReject… Setting
the t field member of the generated structure specifies the choice alternative. The value
T_H225RasMessage_gatekeeperRequest specifies the gatekeeper request option, whereas
T_H225RasMessage_gatekeeperConfirm specifies the gatekeeper confirm, etc. The data for the structure is
set by filling in the union value u with data of the selected choice option.

The general procedure to populate the data structure and encode a message is as follows (see writer.c for
details):

1. Declare an ASN1CTXT variable and initialize it using the rtInitContext function,

2. Populate the ASN1T_H225RasMessage structure with the data to be encoded as described above,

3. Use the pu_setBuffer function to specify the buffer the message is to be encoded into,

4. Invoke the asn1PE_H225RasMessage function to encode the packet, and

5. Use the pe_GetMsgPtr function to get the start address and length of the encoded message
component,

6. Use the rtFreeContext function to release the ASN1CTXT when finished.

Encoding a Q.931 Message

Q.931 messages are another class of H.323 messages. These messages are used for call control between
two H.323 terminals. The general format of a Q.931 message includes a protocol discriminator, a call
reference value to distinguish between different calls, a message type, and various information elements
(IE’s) as required by the particular message type. The User-User Information Element is used by H.323 to
carry the call control information, which is encoded in ASN.1 PER format. The following diagram shows
the byte layout for a Q.931 message:

Protocol discriminator Byte 0
Call reference value length (always 2) Byte 1

Protocol discriminator Byte 0
Call reference value length (always 2) Byte 1
Call reference value Bytes 2 & 3

Q.931 header {
Message type Byte 4

Q.931 body {

Information elements
(e.g., User-User Information Element
encoded in ASN.1 PER format)

Bytes 5 and up

After identifying the call and the message type in the Q.931 header, the IE’s must be encoded. The IE’s
have a small header comprised of the IE identifier and IE length, after which the IE data follows. For H.323
this is where the PER encoded User-User Information Element goes. Refer to the H.323 and Q.931
specifications for more specific encoding details for the different message types.

The ASN.1 definition for a Q.931 User-User Information Element is as follows:

H323-UserInformation ::= SEQUENCE -- root for all Q.931 related ASN.1
{
 h323-uu-pdu H323-UU-PDU,
 user-data SEQUENCE
 {
 protocol-discriminator INTEGER (0..255),
 user-information OCTET STRING (SIZE(1..131)),
 ...
 } OPTIONAL,
 ...
}

The user should use the sample programs in the H.323 sample directory (h323fw/sample/ h323_ui) as a
guide when reading the rest of the procedure.

To encode a Q.931 message, a variable of the ASN1T_H225H323_UserInformation C structure must first
be populated with data. This structure is as follows:

typedef struct EXTERN ASN1T_H225H323_UserInformation {
 struct {
 unsigned user_dataPresent : 1;
 } m;
 ASN1T_H225H323_UU_PDU h323_uu_pdu;
 ASN1T_H225H323_UserInformation_user_data user_data;
 ASN1TSeqExt extElem1;

 ASN1T_H225H323_UserInformation () {
 m.user_dataPresent = 0;
 }
} ASN1T_H225H323_UserInformation;

This structure has four fields: m, h323_uu_pdu, user_data, and extElem1. The m field is a bit-field which
flags whether the user_data field is populated. The data for the structure h323_uu_pdu must be set. If
applicable, the user_data and extElem1 fields can also be set. The extElem1 field is a collector for open
extension items, as the ASN.1 H323-UserInformation definition is an open sequence.

After the ASN1T_H225H323_UserInformation C structure is populated completely, it should be encoded.
Once this is completed, the encoded data should be sent as the User-user Information Element within a
Q.931 message. The procedure to do this is as follows:

1. Declare an ASN1CTXT variable and initialize it using the rtInitContext function,

2. Populate the ASN1T_H225H323_UserInformation structure with the data to be encoded as

described above,

3. Use the pu_setBuffer function to specify the buffer the message is to be encoded into,

4. Invoke the asn1PE_H225H323_UserInformation function to encode the packet,

5. Use the pe_GetMsgPtr function to get the start address and length of the encoded message
component.

6. Use the encoded message component as the User-user Information Element data within the
appropriate Q.931 IE, after the appropriate Q.931 header, as described above, and

7. Use the rtFreeContext function to release the ASN1CTXT when finished.

Encoding a H.245 Message

H.245 messages are the third class of H.323 messages. These messages are used for multimedia control
signaling during a call between two H.323 terminals. The ASN.1 definition for a H.245 message is as
follows:

MultimediaSystemControlMessage ::=CHOICE
{
 request RequestMessage,
 response ResponseMessage,
 command CommandMessage,
 indication IndicationMessage,
 ...
}

To encode a H.245 message, a variable of the ASN1T_H245MultimediaSystemControlMessage C structure
must first be populated with data. This structure is as follows:

typedef struct EXTERN ASN1T_H245MultimediaSystemControlMessage {
 int t;
 union {
 /* t = 1 */
 ASN1T_H245RequestMessage *request;
 /* t = 2 */
 ASN1T_H245ResponseMessage *response;
 /* t = 3 */
 ASN1T_H245CommandMessage *command;
 /* t = 4 */
 ASN1T_H245IndicationMessage *indication;
 /* t = 5 */
 ASN1TOpenType *extElem1;
 } u;
} ASN1T_H245MultimediaSystemControlMessage;

This structure has two fields: t and u. The t field is defined as follows:

#define T_H245MultimediaSystemControlMessage_request 1

#define T_H245MultimediaSystemControlMessage_response 2
#define T_H245MultimediaSystemControlMessage_command 3
#define T_H245MultimediaSystemControlMessage_indication 4
#define T_H245MultimediaSystemControlMessage_extElem1 5

This is a choice of four alternatives: request, response, command, or indication. Setting the t field member
of the generated structure specifies the choice alternative. The value
T_H245MultimediaSystemControlMessage_request specifies the request option,
T_H245MultimediaSystemControlMessage_response specifies response,
T_H245MultimediaSystemControlMessage_command specifies command,
T_H245MultimediaSystemControlMessage_indication specifies indication, and
T_H245MultimediaSystemControlMessage_extElem1 specifies extElem1. The data for the structure is set
by filling in the union value u with data of the selected choice option. The extElem1 field is a collector for
open extension items, as the ASN.1 MultimediaSystemControlMessage definition is an open choice.

The general procedure to do everything is as follows (see tester.c for details):

1. Declare an ASN1CTXT variable and initialize it using the rtInitContext function,

2. Populate the ASN1T_H245MultimediaSystemControlMessage structure with the data to be
encoded as described above,

3. Use the pu_setBuffer function to specify the buffer the message is to be encoded into,

4. Invoke the asn1PE_H245MultimediaSystemControlMessage function to encode the packet,

5. Use the pe_GetMsgPtr function to get the start address and length of the encoded message
component, and

6. Use the rtFreeContext function to release the ASN1CTXT when finished.

Decoding H.323 Packet Structures

This section describes the procedure to decode different types of H.323 messages. This is the inverse of the
encoding procedures presented earlier.

Decoding a RAS Message

The procedure to decode a RAS message is as follows:

1. Declare an ASN1CTXT variable and initialize it using the rtInitContext function,

2. Use the pu_setBuffer function to set the pointer and length of the buffer containing the RAS
message structure to be decoded,

3. Invoke the asn1PD_H225RasMessage function to decode the data,

4. Access the ASN1T_H225RasMessage structure to get at the decoded data fields,

5. Use the rtFreeContext function to release the ASN1CTXT when finished.

The C structures that are used to describe a RAS message were shown in the section on encoding.

Decoding a Q.931 Message

The procedure to decode the Q.931 message structure is as follows:

1. Declare a Q931Message variable and initialize it using the memset function,

2. Declare an ASN1CTXT variable and initialize it using the rtInitContext function,

3. Set the Q931Message.ctxt_p pointer to point to the ASN1CTXT variable (if you wish to keep the
context pointer associated with the Q.931 message),

4. Use the q931_Decode function to decode the Q.931 message from a data buffer into the
Q931Message variable,

5. Use the q931_GetIE function with the Q931UserUserIE code to extract the User-user Information
Element data buffer from the Q.931 message,

6. Use the pu_setBuffer function to set the pointer and length of the buffer containing the Q.931
Information Element message structure to be decoded,

7. Invoke the asn1PD_H225H323_UserInformation function to decode the data,

8. Access the ASN1T_H225H323_UserInformation structure to get at the decoded data fields,

9. Use the rtFreeContext function to release the ASN1CTXT when finished.

The C structures that are used to describe a Q.931 message were shown in the section on encoding.

Decoding a H.245 Message

The procedure to decode the H.245 message structure is as follows:

1. Declare an ASN1CTXT variable and initialize it using the rtInitContext function,

2. Use the pu_setBuffer function to set the pointer and length of the buffer containing the H.245
message structure to be decoded,

3. Invoke the asn1PD_H245MultimediaSystemControlMessage function to decode the data,

4. Access the ASN1T_H245MultimediaSystemControlMessage structure to get at the decoded data
fields,

5. Use the rtFreeContext function to release the ASN1CTXT when finished.

The C structures that are used to describe a H.245 message were shown in the section on encoding.

