
CSTA Phase 2 C++ API Evaluation Kit for Windows

User’s Guide

Objective Systems, Inc. June 2019

Introduction

The Objective Systems’ CSTA Phase 2 C++ API Evaluation Kit for Windows is a collection of classes for
encoding and decoding messages from the CSTA Phase 2 ASN.1 specification using the Basic Encoding
Rules (BER) as defined in ITU standard X.690.

This API kit has been developed in the C++ programming language. The Objective Systems ASN1C
compiler is used (by you, using supplied makefiles or project files) to generate the structures and
encode/decode functions. These are then compiled (by you, using supplied makefiles or project files) using
any of the compilers for which an ASN1C run-time collection exists. Since this kit is an evaluation kit, you
must have a copy of the ASN1C software. If you don't have ASN1C, you can download a 30-day trial
version at http://www.obj-sys.com/asn1-compiler.shtml.

Contents of the Package

The following diagram shows the directory tree structure that comprises the C++ CSTA phase 2 evaluation
kit package:

csta2fw
 |

 +- build
 |
 +- build_dll

 |
 +- doc
 |
 +- lib
 |
 +- specs
 |
 +- src
 |
 +- sample

The purpose and contents of the various subdirectories are as follows:

 build: Contains the makefile to build the CSTA and ACSE runtime library for the CSTA phase 2
and ACSE source code API.

 build_dll: Contains the makefile to build the dll version of the CSTA and ACSE libraries.
 lib – Contains following libraries and DLLs.

cstap2_a.lib Contains (after you build it) CSTA phase 2 protocol (ECMA-218) and
ROSE protocol (ITU-T X.880 / ISO 13712-1) implementation in a static
library.

acse_a.lib Contains (after you build it) ACSE protocol (X.227 / ISO 8650) and
related ASN.1 definition implementation in a static library.

cstap2.dll Contains (after you build it) CSTA phase 2 protocol (ECMA-218) and
ROSE protocol (ITU-T X.880 / ISO 13712-1) implementation in a
DLL. There is also an accompanying cstap2.lib symbol table file.

acse.dll Contains (after you build it) ACSE protocol (X.227 / ISO 8650) and
related ASN.1 definition implementation in a DLL. There is also an
accompanying acse.lib symbol table file.

 src – Contains the source code for the CSTA phase 2, ROSE, ACSE, Information Framework and
UsefulDefinition ASN.1 specifications that are generated (by you) using the ASN1C compiler.

 doc – Contains this document

 specs – Contains the CSTA (ECMA-218), ROSE (X.880) , ACSE (X.227), Information
Framework(X.501), and UsefulDefinitions (X.501) ASN.1 specifications that were used in the
compilation.

 sample – Contains sample programs that illustrate how to use the API.

Getting Started

The package is delivered as a zip archive that should be unpacked into one of the cpp folders of your
ASN1C installation. Which folder you choose depends on which compiler you want to use to build the
software. The folder named just cpp is for the default version of Visual Studio for your version of the
ASN1C SDK. You can determine which version of Visual Studio is the default by looking at the cpp_vs*
folders in your SDK installation. The version of Visual Studio that is not mentioned in one of those folders
is the default version. So if you want to use the default version of Visual Studio, you would unpack the zip
into the cpp folder. If, on the other hand, you want to use a different version of Visual Studio, you would
unpack the zip into the appropriate cpp_vs* folder. All makefiles and internal sample programs use
relative directory paths, so it is not necessary to create any type of top-level environment variables.

The libraries must be compiled before use. It is necessary to have a working copy of ASN1C already
installed on the system in order to generate the required source code. Running nmake in the build
subdirectory will generate the source code, compile it, and package it into the library files described above.
Alternatively, running nmake in the build_dll subdirectory will package the code into the DLL files
described above You need to use a command window that is appropriate for the compiler you're using.

The code can be tested by executing the sample programs in the sample subdirectory. Most of these sample
programs consist of a reader and writer program. The writer program populates a data variable with some
data, calls an encode function, and then writes the encoded byte stream to a file. The reader program reads
this file, decodes the data into a C++ structure, and then prints the decoded results.

The kit also includes Visual Studio 2010 solution and project files that build the libraries and DLLs as well
as all of the samples. Only Visual Studio 2010 files are provided. If you're using a Microsoft compiler
older than Visual Studio 2010, you must use the makefiles to do the building. If you're using a Microsoft
compiler newer than Visual Studio 2010, the solution and project files should migrate forward if you open
them in the IDE of the newer compiler.

CSTA Explicit Association

The CSTA protocol operates within an application association (otherwise known as a CSTA association or
association) as provided by IS 8649 (ACSE). This association can be either:

 an implicit association achieved via an off-line agreement or
 an explicit association realized through the use of ACSE.

The initialization sequence of explicit associations is described in the following sections. Explicit/dynamic
association can be realized by using acse_a.lib or acse.dll (ACSE ASN.1 implementation) API.

ACSE service or application context can be defined as follows:

 A-ASSOCIATE: This confirmed service is used to initiate an application association between
application entities

1. The A-ASSOCIATE service is initialized by sending a message of type
ASN1T_AARQ_apdu and waiting for a response. To generate an AARQ-apdu message,
the user will need to set the application context name to the CSTA Phase 2 object
identifier value. The ACSE-Request sample program can be used as a reference.

2. The response will be an ASN1T_AARE_apdu type. The responder replies with the
accepted CSTA version for connection or reject reason. The protocol version to be used
is selected by identifying the highest CSTA version that is common to both systems. The
ACSE-Response sample program can be used as a reference.

 A-RELEASE: This confirmed service is used to release an application association between
application entities without loss of information.

1. The A- RELEASE service is initialized by sending a message of type
ASN1T_RLRQ_apdu and waiting for a response. The sample program function
encodeACSEReleaseRequest() in the ACSE_Request directory can be used as a reference
to create the release request.

2. The response will be a message of type ASN1T_RLRE_apdu. The sample program
function encodeACSEReleaseResponse() in the ACSE_Response directory can be used as
a reference to create the release request.

 A-ABORT: This unconfirmed service causes the abnormal release of an association with a
possible loss of information.

The A-ABORT service is initialized by sending a message of type ASN1T_ABRT_apdu.
The sample program function encodeACSEAbort() in the ACSE_Request and
ACSE_Response directory can be used as reference.

Encoding CSTA Messages with ROSE Header

The CSTA specification specifies a two-phase protocol using ROSE for the common headers. In order to
encode a message of this type, the following steps must be performed:

1. A CSTA base message type must be encoded, and

2. The results must be plugged into a ROSE message structure and then this is encoded to produce the
finished message.

The user should use the writer program (writer.cpp) in one of the sample directories as a guide when
reading the rest of the procedure.

Encoding a CSTA message

To encode a CSTA message component, a variable of one of the various CSTA class structures must first
be populated with data. These structures normally correspond to the ARGUMENT or RESULT types
specified in a CSTA Phase 2 Information Objects for the OPERATION class. For example, the following
information object specifies the messages that are exchanged for the makeCall operation:

makeCall OPERATION ::= {
ARGUMENT MakeCallArgument
RESULT MakeCallResult
ERRORS {universalFailure}
CODE local : 10

}

In this information object, the CODE field defines the value “local: 10” to identify a makeCall operation.
The name “local” is actually the name of a CHOICE in the ASN.1 specification that stipulates that the
operation code will be an integer. The ARGUMENT field defines the MakeCallArgument type, which can
be used to invoke the makeCall operation. The RESULT field defines the MakeCallResult type, which is
used to return the result of the makeCall operation. The ERRORS field defines another information object
that contains the error type that can be produced in a makeCall operation.

Table 1 is developed from the CSTA phase 2 OPERATION class information object definitions. This table
contains the operation name, operation code, argument type and result type for each operation. To
encode/invoke the operation, the user must set the operation code value and encode the argument type
defined in this table. To decode the operation, the user must check the operation code value and decode the
corresponding result type or argument type. For example, for the makeCall operation, the user will need to
set the ASN1T_CSTA_ROSE_PDU_invoke.operationCode value to local:10 and encode the
ASN1T_MakeCallArgument type in ASN1T_CSTA_ROSE_PDU_invoke argument open type field.

In this case, MakeCallArgument is encoded and sent as a request message (or invoke as it is known in
ROSE). The entity receiving this message is then required to respond with the result message of
MakeCallResult type or one of the defined errors in the universalFailure information object.

The sample program in the makeCall_Request directory shows how to encode a MakeCallArgument:

MakeCallArgument ::=
SEQUENCE
{callingDevice DeviceID,
 calledDirectoryNumber CalledDeviceID,
 extensions CSTACommonArguments OPTIONAL}

Encoding “cSTAEventReport” Operations:

“cSTAEventReport” operation has the special case of event, which is different from other operations. To
encode the event the user will need to encode the CSTAEventReportArgument type defined in the table 1; e.g,
for the “delivered” event, user will need to set the ASN1T_CSTAEventReportArgument as follows.

The following is a snippet from the writer.cpp “delivered_Event” directory sample program showing how
the value is populated:

 /* delivered event */
 ASN1T_DeliveredEvent delivered;
 //populate value for delivered data structure

 ASN1T_CallEvent callevent;
 callevent.t = T_CallEvent_deliveredEvent;
 callevent.u.deliveredEvent = &delivered;

 /* CSTAEventReportArgument */
 ASN1T_CSTAEventReportArgument eventReportArg;
 ASN1OCTET data[] = { 0x99 };
 eventReportArg.crossRefIdentifier.numocts = 1;

 eventReportArg.crossRefIdentifier.data = data;
 eventReportArg.eventSpecificInfo.t = T_EventSpecificInfo_callEvent;
 eventReportArg.eventSpecificInfo.u.callEvent = &callevent;

.1 Encoding a ROSE Header

Once the argument is populated and encoded, the ROSE header must be added. This is a common header
that is added to all messages that support the ROSE protocol. In the case of a ROSE OPERATION, a
ROSE Invoke message must be sent to the other entity.

The ROSE header required to send an invoke message consists of 4 fields:

1. Invoke ID: this is an arbitrary identifier that acts as a “handle” for matching responses to requests
when messages are exchanged. Any result or error received in response to this invoke request will
contain this identifier value.

2. Linked ID: this is another Invoke ID that is used when a sub-operation within the existing
operation is initiated. The Linked ID is the Invoke ID of the parent (i.e. the encapsulating)
operation.

3. Operation Code: this identifies the operation to the receiving entity. Table 1 can be used to find
out the operation code value for a particular operation. For example, the makeCall operation
corresponds to the “local : 10” value.

4. Message Data: this is an open type. The CSTA encoded message data is placed in this open type
field. Table 1 can be used to find out the type of message that should be used for a particular
operation. For example, the makeCall operation corresponds to the MakeCallArgument type.

The following is a snippet from the writer.cpp sample program showing how the header is added:

 /* Populate header structure */

 invoke.m.argumentPresent = 1;
 invoke.invokeId.t = T_InvokeId_present;
 invoke.invokeId.u.present = 1; /* arbitrary number: should be unique */
 invoke.opcode.t = T_Code_local;
 invoke.opcode.u.local = 10; /* “makeCall” operation code */

 /* This is where we get the previously encoded message component */
 invoke.argument.numocts = msglen;
 invoke.argument.data = (ASN1OCTET*) encodeBuffer.getMsgPtr();

 pdu.t = T_CSTA_ROSE_PDU_invoke;
 pdu.u.invoke = &invoke;

The header identifies the operation to be performed (opcode = 10 = makeCall) and assigns a unique invoke
identifier. This invoke identifier serves as a session ID that can be used to match requests with responses if
asynchronous communications are used. The last part of the populate logic gets the previously encoded
message component from encoding the make call argument data. This is the open type onto which the
ROSE header is prepended.

Decoding CSTA Messages

CSTA messages are decoded by reversing the procedure that was used to encode them. In other words, the
following two distinct decode operations must be performed:

1. The ROSE header must be decoded, and

2. The CSTA message type must be decoded

This is the inverse of the encoding procedure presented earlier. The user should use the reader program
(reader.cpp) in one of the samples as a guide when reading the rest of the procedure.

The procedure to decode a complete CSTA message is as follows:

1. Read an encoded message from an input stream.

2. Create an ASN1BERDecodeBuffer object to wrap the message buffer that the message was read
into.

3. Create a CSTA_ROSE_PDU object and use it in conjunction with the decode buffer object created
above to decode the header.

4. The header fields can now be examined. An application will first check Invoke ID to find out the
response for different sessions. For our example, the value of the Invoke ID field should be “1”,
which is random unique number we have set during encode procedure. Then to identify the
operation, the operation code value is checked. This should be equal to “local:10” for a
result/error for our invoke request.

5. Create a second ASN1BERDecodeBuffer object using the open type data contained in the ROSE
header structure as the message source.

6. Create the specific CSTA message type object based on the operation code value and
corresponding result type from Table 1. Use this result type decode method to decode the CSTA
message component.

Table 1: Operation Table for CSTA phase 2

Operation name
Operation
Identifier Operation Invoke type Operation Result type

alternateCall local: 1 AlternateCallArgument AlternateCallResult
answerCall local: 2 AnswerCallArgument AnswerCallResult
callCompletion local: 3 CallCompletionArgument CallCompletionResult
clearCall local: 4 ClearCallArgument ClearCallResult
clearConnection local: 5 ClearConnectionArgument ClearConnectionResult
conferenceCall local: 6 ConferenceCallArgument ConferenceCallResult
consultationCall local: 7 ConsultationCallArgument ConsultationCallResult
divertCall local: 8 DivertCallArgument DivertCallResult
holdCall local: 9 HoldCallArgument HoldCallResult
makeCall local: 10 MakeCallArgument MakeCallResult
makePredictiveCall local: 11 MakePredictiveCallArgument MakePredictiveCallResult
queryDevice local: 12 QueryDeviceArgument QueryDeviceResult
reconnectCall local: 13 ReconnectCallArgument ReconnectCallResult
retrieveCall local: 14 RetrieveCallArgument RetrieveCallResult
setFeature local: 15 SetFeatureArgument SetFeatureResult

transferCall local: 16 TransferCallArgument TransferCallResult
associateData local: 17 AssociateDataArgument AssociateDataResult
parkCall local: 18 ParkCallArgument ParkCallResult
sendDTMFTones local: 19 SendDTMFTonesArgument SendDTMFTonesResult
singleStepConf local: 20 SingleStepConfArgument SingleStepConfResult
cSTAEventReport local: 21 CSTAEventReportArgument
routeRequest local: 31 RouteRequestArgument
reRouteRequest local: 32 ReRouteRequestArgument
routeSelectRequest local: 33 RouteSelectRequestArgument
routeUsedRequest local: 34 RouteUsedRequestArgument
routeEndRequest local: 35 RouteEndRequestArgument
singleStepTrans local: 50 SingleStepTransArgument SingleStepTransResult
escapeService local: 51 EscapeServiceArgument EscapeServiceResult
systemStatus local: 52 SystemStatusArgument SystemStatusResult
monitorStart local: 71 MonitorStartArgument MonitorStartResult
changeMonitorFilter local: 72 ChangeMonitorFilterArgument ChangeMonitorFilterResult
monitorStop local: 73 MonitorStopArgument MonitorStopResult
snapshotDevice local: 74 SnapshotDeviceArgument SnapshotDeviceResult
snapshotCall local: 75 SnapshotCallArgument SnapshotCallResult
startDataPath local: 110 StartDataPathArgument StartDataPathResult
stopDataPath local: 111 StopDataPathArgument StopDataPathResult
sendData local: 112 SendDataArgument SendDataResult
sendMulticastData local: 113 SendMulticastDataArgument SendMulticastDataResult
sendBroadcastData local: 114 SendBroadcastDataArgument SendBroadcastDataResult
suspendDataPath local: 115 SuspendDataPathArgument SuspendDataPathResult
dataPathSuspende
d local: 116 DataPathSuspendedArgument DataPathSuspendedResult
resumeDataPath local: 117 ResumeDataPathArgument ResumeDataPathResult
dataPathResumed local: 118 DataPathResumedArgument DataPathResumedResult
fastData local: 119 FastDataArgument FastDataResult
concatenateMessag
e local: 500

ConcatenateMessageArgument ConcatenateMessageResult

deleteMessage local: 501 DeleteMessageArgument DeleteMessageResult
playMessage local: 502 PlayMessageArgument PlayMessageResult
queryVoiceAttribute local: 503 QueryVoiceAttributeArgument QueryVoiceAttributeResult
reposition local: 504 RepositionArgument RepositionResult
resume local: 505 ResumeArgument ResumeResult
review local: 506 ReviewArgument ReviewResult
setVoiceAttribute local: 507 SetVoiceAttributeArgument SetVoiceAttributeResult
stop local: 508 StopArgument StopResult
suspend local: 509 SuspendArgument SuspendResult
synthesizeMessage local: 510 SynthesizeMessageArgument SynthesizeMessageResult
recordMessage local: 511 RecordMessageArgument RecordMessageResult

NOTE: For all the of the above operations or information objects, the return error type is
ASN1T_UniversalFailure.

Common CSTA Operations

Making a Call

One possible need with CSTA messaging is to send the PBX a message telling it to make a call and then to
retrieve the call id (a sequence of octets) for the resulting call from the response that the PBX sends back
to the client.

The code sample below shows how this operation can be done. The sample uses a method called
makeCall() within a class called CSTAEngine. The method accepts two arguments (the calling number and
the number to call) and returns a pointer to the call id octet sequence. If anything goes wrong, the method
simply returns NULL.

This code sample uses the following variable prefix conventions:

psz – Pointer to null-terminated string.
pach – Pointer to an array of chars (not necessarily null-terminated).
t – Structure or object instance.
pt – Pointer to a structure or object instance.
i – Integer.

If a variable ends with _T, the variable refers to an ASN1C-generated data object. If a variable ends with
_C, the variable refers to an ASN1C-generated control object.

#include "CSTA-call-connection-identifiers.h"
#include "CSTA-make-call.h"
#include "CSTA-device-identifiers.h"
#include "CSTA-ROSE-PDU-types.h"
#include "Remote-Operations-Information-Objects.h"

#include "asn1BerCppTypes.h"
#include "asn1CppTypes.h"
#include "ASN1TOctStr.h"

#include "CSTAEngine.h"

#include <memory.h>

These are the include directives that are necessary.

char *CSTAEngine::makeCall(char *pszCallingDevice, char
*pszCalledDevice)
{
 ASN1BEREncodeBuffer tEncodeBuffer;
 ASN1T_MakeCallArgument tMakeCallArgument_T;
 ASN1C_MakeCallArgument tMakeCallArgument_C(tEncodeBuffer,
tMakeCallArgument_T);

In this section the method is allocating an encode buffer, a data object for the argument for the Make Call
message, and a control object for the same argument.

 tMakeCallArgument_T.callingDevice.t = T_DeviceID_dialingNumber;
 tMakeCallArgument_T.callingDevice.u.dialingNumber = pszCallingDevice;

Here the method is indicating that the calling device will be specified as a dialing number (an extension
number or phone number, in other words), and it specifies what that number is.

 ASN1T_DeviceID tDeviceID;

 tDeviceID.t = T_DeviceID_dialingNumber;
 tDeviceID.u.dialingNumber = pszCalledDevice;

Here the method is setting up the first of two structures that will be needed to specify the number that is
being called.

 ASN1T_ExtendedDeviceID tExtendedDeviceID;
 tExtendedDeviceID.t = T_ExtendedDeviceID_deviceIdentifier;
 tExtendedDeviceID.u.deviceIdentifier = &tDeviceID;

Here the method is setting up the second of the two structures that will be needed to specify the number
that is being called.

 tMakeCallArgument_T.calledDirectoryNumber.t =
T_CalledDeviceID_deviceIdentifier;
 tMakeCallArgument_T.calledDirectoryNumber.u.deviceIdentifier =
&tExtendedDeviceID;

Here the method is setting up the fields within the actual Make Call argument for the number that is being
called. Note that the Make Call argument refers to the extended device id structure, and the extended
device id structure refers to the device id structure.

 int iLength = tMakeCallArgument_C.Encode();
 if (iLength < 0) return NULL;

Here the method is encoding the Make Call argument and checking to see if the encoding worked.

 ASN1T_CSTA_ROSE_PDU tROSEHeaderEnc_T;
 ASN1C_CSTA_ROSE_PDU tROSEHeaderEnc_C(tEncodeBuffer,
tROSEHeaderEnc_T);
 ASN1T_CSTA_ROSE_PDU_invoke tInvokeObject;

Every CSTA message is wrapped within a ROSE header, so here the method is allocating the objects and
structures needed to encode the header. Note that the control object for the ROSE header is constructed
using the same encode buffer instance that was used for the control object for the Make Call argument.
The same buffer is used because the ROSE header will wrap; i.e, include, the information in the Make Call
argument.

The invoke object is used because the ROSE operation that is used to tell the PBX to make a call is
INVOKE.

 tInvokeObject.m.argumentPresent = 1;
 tInvokeObject.invokeId.t = T_InvokeId_present;
 tInvokeObject.invokeId.u.present = 1;
 tInvokeObject.opcode.t = T_Code_local;
 tInvokeObject.opcode.u.local = 10;

Here the method is populating the invoke object. The first line indicates that an argument will be present in
the ROSE header. This argument will be the encoded Make Call argument.

The second line indicates that an invoke id will be present in the header. The invoke id is any number to
identify this instance of the message that the PBX will accept.

The third line sets the invoke id to 1. The invoke id should be different for each CSTA message sent to the
PBX, though wrapping back to 1 after some maximum value will likely be necessary. In some cases the
invoke id can contain a couple of pieces of information, again depending on what the PBX will accept.

The fourth line indicates that the opcode that will be used is a local opcode; i.e., defined in the CSTA
ASN.1 specification, as opposed to a global opcode.

The fifth line sets the opcode to 10, which is the opcode for Make Call.

 tInvokeObject.argument.numocts = iLength;
 tInvokeObject.argument.data = (OSOCTET *) tEncodeBuffer.getMsgPtr();

Here the method is setting the already-encoded Make Call argument into the invoke object.

 tROSEHeaderEnc_T.t = T_CSTA_ROSE_PDU_invoke;
 tROSEHeaderEnc_T.u.invoke = &tInvokeObject;

Here the method “tells” the ROSE header that the operation will be an INVOKE operation and sets the
invoke object to the header.

 iLength = tROSEHeaderEnc_C.Encode();
 if (iLength < 0) return NULL;

Here the method encodes the ROSE header and checks to see if the encoding worked. The encoded ROSE
header will include the bytes of the already-encoded Make Call argument.

At this point the Make Call argument is completely encoded. So the next step for this method is to send the
message to the PBX, using whatever mechanism is necessary (e.g., TCP/IP). We will assume that the
message has been sent and a response received. We will further assume that pachResponseFromPBX
points to the bytes of the encoded response message, and that iResponseFromPBX contains the length of
the response message.

 ASN1BERDecodeBuffer tROSEDecodeBuffer(pachResponseFromPBX,
iResponseFromPBX);
 ASN1T_CSTA_ROSE_PDU tROSEHeaderDec_T;
 ASN1C_CSTA_ROSE_PDU tROSEHeaderDec_C(tROSEDecodeBuffer,
tROSEHeaderDec_T);

Here the method is allocating some objects to decode the ROSE header of the response. The first line
allocates a decode buffer. The second line allocates a data object. And the third line allocates a control
object.

 int iStatus = tROSEHeaderDec_C.Decode();
 if (iStatus != 0) return NULL;

Here the method decodes the ROSE header and checks to see if the decoding worked.

 if (tROSEHeaderDec_T.t != T_CSTA_ROSE_PDU_returnResult) return NULL;
 if (tROSEHeaderDec_T.u.returnResult->result.opcode.t !=
T_Code_local) return NULL;
 if (tROSEHeaderDec_T.u.returnResult->result.opcode.u.local != 10)
return NULL;

Here the method does a few sanity checks against the decoded ROSE header. The first line checks to make
sure that the message is a RETURN RESULT message. The second line checks to make sure that the
opcode associated with the response message is a local opcode. And the third line checks to make sure that
the opcode associated with the response message is the Make Call opcode.

The method could also check the invoke id of the result message at this point. The invoke id is contained
in the invokeId field of returnResult. The invoke id of a result message should be the same as the invoke id
of the original INVOKE message.

 ASN1BERDecodeBuffer
tContentDecodeBuffer(tROSEHeaderDec_T.u.returnResult-
>result.result.data, tROSEHeaderDec_T.u.returnResult-
>result.result.numocts);
 ASN1T_MakeCallResult tMakeCallResult_T;
 ASN1C_MakeCallResult tMakeCallResult_C(tContentDecodeBuffer,
tMakeCallResult_T);

Here the method is allocating objects needed to decode the actual content of the response message, as
opposed to the ROSE header. In this case the content is a Make Call Result message.

 iStatus = tMakeCallResult_C.Decode();
 if (iStatus != 0) return NULL;

Here the method is decoding the contents of the response message and checking to see if the decoding
worked.

 if (tMakeCallResult_T.t != T_MakeCallResult_initiatedCall) return
NULL;
 ASN1T_ConnectionID *ptConnectionID =
tMakeCallResult_T.u.initiatedCall;
 if (!ptConnectionID->m.callPresent) return NULL;

Here the method is checking to make sure the result message contains the needed information about the
new call and that the new call's connection id contains the call id.

 ASN1TDynOctStr tCallID = ptConnectionID->call;
 char *pachCallID = new char [tCallID.numocts];
 memcpy(pachCallID, tCallID.data, tCallID.numocts);
 return pachCallID;

Here the method is extracting the octets of the call id from the response message. A new buffer is allocated
on the heap for the octets of the call id so there is no pointer to memory that might go out of scope.

Returning the pointer to the ASN1T_ConnectionID structure itself is also possible. As with the call id, a
copy of the connection id should be made and a pointer to that copy returned. Such a copy operation is not
as trivial as it may sound, as the ASN1T_ConnectionID structure can have multiple levels of nested
structure pointers. ASN1C can generate copy functions for all generated structures and objects by adding
-gencopy to its command line (in the makefile or the Visual Studio project). If copy functions are
generated, the function to copy an ASN1T_ConnectionID instance can be invoked to do a complete copy of
the structure.

Monitoring

A frequent need in CSTA applications is to monitor one or more telephony devices. There are three parts
to monitoring: starting a monitor, receiving monitor events, and stopping a monitor.

Starting a Monitor

The code sample below shows how a monitor can be started. The sample uses a method called
startMonitor() within a class called CSTAEngine. The method accepts one argument (the extension

number to monitor) and returns a pointer to the monitor cross reference id (a sequence of bytes assigned by
the PBX to identify the monitor). If anything goes wrong, the method simply returns NULL.

This code sample uses the following variable prefix conventions:

psz – Pointer to null-terminated string.
pach – Pointer to an array of chars (not necessarily null-terminated).
t – Structure or object instance.
pt – Pointer to a structure or object instance.
i – Integer.

If a variable ends with _T, the variable refers to an ASN1C-generated data object. If a variable ends with
_C, the variable refers to an ASN1C-generated control object.

#include "CSTA-status-reporting.h"
#include "CSTA-monitor-start.h"
#include "CSTA-device-identifiers.h"
#include "CSTA-switching-function-objects.h"
#include "CSTA-ROSE-PDU-types.h"

#include "asn1BerCppTypes.h"
#include "asn1CppTypes.h"
#include "ASN1TOctStr.h"
#include "osSysTypes.h"

#include "CSTAEngine.h"

These are the include directives that are necessary.

ASN1T_MonitorCrossRefID *CSTAEngine::startMonitor(char
*pszDeviceToMonitor)
{
 ASN1BEREncodeBuffer tEncodeBuffer;
 ASN1T_MonitorStartArgument tMonStartArgument_T;
 ASN1C_MonitorStartArgument tMonStartArgument_C(tEncodeBuffer,
tMonStartArgument_T);

In this section the method is allocating an encode buffer, a data object for the argument for the Monitor
Start message, and a control object for the same argument.

 ASN1T_DeviceID tDevice;
 tDevice.t = T_DeviceID_dialingNumber;
 tDevice.u.dialingNumber = pszDeviceToMonitor;

Here the method is setting up a structure that will be needed to specify the number that is being called. The
method is indicating that the device to monitor will be specified as a dialing number (an extension number
or phone number, in other words), and it specifies what that number is.

 tMonStartArgument_T.monitorObject.t = T_CSTAObject_device;
 tMonStartArgument_T.monitorObject.u.device = &tDevice;

Here the method is tying the object for the Monitor Start argument's data to the device structure that it just
populated.

 int iLength = tMonStartArgument_C.Encode();
 if (iLength < 0) return NULL;

Here the method is encoding the Monitor Start argument and checking to see if the encoding worked.

 ASN1T_CSTA_ROSE_PDU tROSEHeaderEnc_T;
 ASN1C_CSTA_ROSE_PDU tROSEHeaderEnc_C(tEncodeBuffer,
tROSEHeaderEnc_T);
 ASN1T_CSTA_ROSE_PDU_invoke tInvokeObject;

Every CSTA message is wrapped within a ROSE header, so here the method is allocating the objects and
structures needed to encode the header. Note that the control object for the ROSE header is constructed
using the same encode buffer instance that was used for the control object for the Monitor Start argument.
The same buffer is used because the ROSE header will wrap; i.e, include, the information in the Monitor
Start argument.

 tInvokeObject.m.argumentPresent = 1;
 tInvokeObject.invokeId.t = T_InvokeId_present;
 tInvokeObject.invokeId.u.present = 1;
 tInvokeObject.opcode.t = T_Code_local;
 tInvokeObject.opcode.u.local = 71;

Here the method is populating the invoke object. The first line indicates that an argument will be present in
the ROSE header. This argument will be the encoded Monitor Start argument.

The second line indicates that an invoke id will be present in the header. The invoke id is any number to
identify this instance of the message that the PBX will accept.

The third line sets the invoke id to 1. The invoke id should be different for each CSTA message sent to the
PBX, though wrapping back to 1 after some maximum value will likely be necessary. In some cases the
invoke id can contain a couple of pieces of information, again depending on what the PBX will accept.

The fourth line indicates that the opcode that will be used is a local opcode; i.e., defined in the CSTA
ASN.1 specification, as opposed to a global opcode.

The fifth line sets the opcode to 71, which is the opcode for Monitor Start.

 tInvokeObject.argument.numocts = iLength;
 tInvokeObject.argument.data = (OSOCTET *) tEncodeBuffer.getMsgPtr();

Here the method is setting the already-encoded Monitor Start argument into the invoke object.

 tROSEHeaderEnc_T.t = T_CSTA_ROSE_PDU_invoke;
 tROSEHeaderEnc_T.u.invoke = &tInvokeObject;

Here the method “tells” the ROSE header that the operation will be an INVOKE operation and sets the
invoke object to the header.

 iLength = tROSEHeaderEnc_C.Encode();
 if (iLength < 0) return NULL;

Here the method encodes the ROSE header and checks to see if the encoding worked. The encoded ROSE
header will include the bytes of the already-encoded Monitor Start argument.

At this point the Monitor Start argument is completely encoded. So the next step for this method is to send
the message to the PBX, using whatever mechanism is necessary (e.g., TCP/IP). We will assume that the
message has been sent and a response received. We will further assume that pachResponseFromPBX

points to the bytes of the encoded response message, and that iResponseFromPBX contains the length of
the response message.

 ASN1BERDecodeBuffer tROSEDecodeBuffer(pachResponseFromPBX,
iResponseFromPBX);
 ASN1T_CSTA_ROSE_PDU tROSEHeaderDec_T;
 ASN1C_CSTA_ROSE_PDU tROSEHeaderDec_C(tROSEDecodeBuffer,
tROSEHeaderDec_T);

Here the method is allocating some objects to decode the ROSE header of the response. The first line
allocates a decode buffer. The second line allocates a data object. And the third line allocates a control
object.

 int iStatus = tROSEHeaderDec_C.Decode();
 if (iStatus != 0) return NULL;

Here the method decodes the ROSE header and checks to see if the decoding worked.

 if (tROSEHeaderDec_T.t != T_CSTA_ROSE_PDU_returnResult) return NULL;
 if (tROSEHeaderDec_T.u.returnResult->result.opcode.t !=
T_Code_local) return NULL;
 if (tROSEHeaderDec_T.u.returnResult->result.opcode.u.local != 71)
return NULL;

Here the method does a few sanity checks against the decoded ROSE header. The first line checks to make
sure that the message is a RETURN RESULT message. The second line checks to make sure that the
opcode associated with the response message is a local opcode. And the third line checks to make sure that
the opcode associated with the response message is the Monitor Start opcode.

The method could also check the invoke id of the result message at this point. The invoke id is contained
in the invokeId field of returnResult. The invoke id of a result message should be the same as the invoke id
of the original INVOKE message.

 ASN1BERDecodeBuffer
tContentDecodeBuffer(tROSEHeaderDec_T.u.returnResult-
>result.result.data, tROSEHeaderDec_T.u.returnResult-
>result.result.numocts);
 ASN1T_MonitorStartResult tMonStartResult_T;
 ASN1C_MonitorStartResult tMonStartResult_C(tContentDecodeBuffer,
tMonStartResult_T);

Here the method is allocating objects needed to decode the actual content of the response message, as
opposed to the ROSE header. In this case the content is a Monitor Start Result message.

 iStatus = tMonStartResult_C.Decode();
 if (iStatus != 0) return NULL;

Here the method is decoding the contents of the response message and checking to see if the decoding
worked.

 ASN1T_MonitorCrossRefID tMonCrossRef =
tMonStartResult_T.crossRefIdentifier;
 ASN1T_MonitorCrossRefID *ptReturnValue = new
ASN1T_MonitorCrossRefID(tMonCrossRef);
 return ptReturnValue;

Here the method is extracting the monitor cross reference id from the result message data. The method
makes a copy of this cross reference id on the heap and returns a pointer to the copy so the caller won't
have a pointer to memory that might go out of scope.

Receiving Monitor Events

When a monitor is established against a device, the PBX sends event report messages to the client software.
For example, lifting the receiver of a monitored device usually causes at least one event report message to
be sent by the PBX.

The code sample below shows how an event report message can be handled. The sample uses a method
called handleEvent() within a class called CSTAEngine. The method accepts two arguments (a pointer to
the bytes of an encoded event report message and the length of the message). So the method assumes that
the client code has a mechanism set up to receive event report messages from the PBX using a
communication mechanism like TCP/IP. For the purposes of this sample any events other than Established
events are ignored.

This code sample uses the following variable prefix conventions:

psz – Pointer to null-terminated string.
pach – Pointer to an array of chars (not necessarily null-terminated).
t – Structure or object instance.
pt – Pointer to a structure or object instance.
i – Integer.

If a variable ends with _T, the variable refers to an ASN1C-generated data object. If a variable ends with
_C, the variable refers to an ASN1C-generated control object.

#include "CSTA-status-reporting.h"
#include "CSTA-monitor-start.h"
#include "CSTA-device-identifiers.h"
#include "CSTA-switching-function-objects.h"
#include "CSTA-event-report-definitions.h"
#include "CSTA-established-event.h"

#include "CSTA-ROSE-PDU-types.h"

#include "asn1BerCppTypes.h"
#include "asn1CppTypes.h"
#include "ASN1TOctStr.h"
#include "osSysTypes.h"

#include "CSTAEngine.h"

These are the include directives that are necessary. An assumption is being made here that this
CSTAEngine class is the same class that has the previously discussed startMonitor() method, so some of
these include directives pertain to that method instead of the handleEvent() method.

void CSTAEngine::handleEvent(OSOCTET *pachEventMessage, int
iEventMessage)
{
 ASN1BERDecodeBuffer tROSEDecodeBuffer(pachEventMessage,
iEventMessage);
 ASN1T_CSTA_ROSE_PDU tROSEHeaderDec_T;
 ASN1C_CSTA_ROSE_PDU tROSEHeaderDec_C(tROSEDecodeBuffer,
tROSEHeaderDec_T);

Here the method is allocating some objects to decode the ROSE header of the event report message. The
first line allocates a decode buffer. The second line allocates a data object. And the third line allocates a
control object.

 int iStatus = tROSEHeaderDec_C.Decode();
 if (iStatus != 0) return;

Here the method decodes the ROSE header and checks to see if the decoding worked.

 if (tROSEHeaderDec_T.t != T_CSTA_ROSE_PDU_invoke) return;
 if (tROSEHeaderDec_T.u.invoke->opcode.t != T_Code_local) return;
 if (tROSEHeaderDec_T.u.invoke->opcode.u.local != 21) return;

Here the method does a few sanity checks against the decoded ROSE header. The first line checks to make
sure that the message is an INVOKE message (CSTA event report messages are INVOKE messages
instead of RETURN RESULT messages).

The second line checks to make sure that the opcode associated with the message is a local opcode. Notice
that the choice within the ROSE header object's union is the “invoke” member instead of the “returnResult”
member.

 And the third line checks to make sure that the opcode associated with the response message is the event
report message opcode.

Since event report messages are INVOKE messages, the invoke id is most likely not going to be the same
as the invoke id of the Monitor Start message that was sent to start the monitor.

 ASN1BERDecodeBuffer tContentDecodeBuffer(tROSEHeaderDec_T.u.invoke-
>argument.data, tROSEHeaderDec_T.u.invoke->argument.numocts);
 ASN1T_CSTAEventReportArgument tEventReportArg_T;
 ASN1C_CSTAEventReportArgument
tEventReportArg_C(tContentDecodeBuffer, tEventReportArg_T);

Here the method is allocating objects needed to decode the actual content of the message, as opposed to the
ROSE header. In this case the content is an Event Report Argument.

 iStatus = tEventReportArg_C.Decode();
 if (iStatus != 0) return;

Here the method is decoding the contents of the message and checking to see if the decoding worked.

 ASN1T_EventSpecificInfo tEventSpecificInfo =
tEventReportArg_T.eventSpecificInfo;
 if (tEventSpecificInfo.t != T_EventSpecificInfo_callEvent) return;

Here the method is checking to see if the event is one of the events in the group known as call events. The
Established event is a call event.

 ASN1T_CallEvent *ptCallEvent = tEventSpecificInfo.u.callEvent;
 if (ptCallEvent->t != T_CallEvent_establishedEvent) return;
 ASN1T_EstablishedEvent *ptEstablishedEvent = ptCallEvent-
>u.establishedEvent;

Here the method checks to make sure the event is an Established event (line 2). Then the method isolates
the information that describes this event.

At this point the variable ptEstablishedEvent points to the information about the Established event, and the
method can do whatever it needs to do with that information.

Stopping a Monitor

The code sample below shows how a monitor can be stopped. The sample uses a method called
stopMonitor() within a class called CSTAEngine. The method accepts one argument (the cross reference id
of the monitor to stop) and returns 0 for success or -1 for failure.

This code sample uses the following variable prefix conventions:

psz – Pointer to null-terminated string.
pach – Pointer to an array of chars (not necessarily null-terminated).
t – Structure or object instance.
pt – Pointer to a structure or object instance.
i – Integer.

If a variable ends with _T, the variable refers to an ASN1C-generated data object. If a variable ends with
_C, the variable refers to an ASN1C-generated control object.

#include "CSTA-status-reporting.h"
#include "CSTA-monitor-start.h"
#include "CSTA-monitor-stop.h"
#include "CSTA-device-identifiers.h"
#include "CSTA-switching-function-objects.h"
#include "CSTA-event-report-definitions.h"
#include "CSTA-established-event.h"

#include "CSTA-ROSE-PDU-types.h"

#include "asn1BerCppTypes.h"
#include "asn1CppTypes.h"
#include "ASN1TOctStr.h"
#include "osSysTypes.h"

#include "CSTAEngine.h"

These are the include directives that are necessary. An assumption is being made here that this
CSTAEngine class is the same class that has the previously discussed startMonitor() and handleEvent()
methods, so some of these include directives pertain to those methods instead of the stopMonitor() method.

int CSTAEngine::stopMonitor(ASN1T_MonitorCrossRefID *ptCrossRefID)
{
 ASN1BEREncodeBuffer tEncodeBuffer;
 ASN1T_MonitorStopArgument tMonStopArgument_T;
 ASN1C_MonitorStopArgument tMonStopArgument_C(tEncodeBuffer,
tMonStopArgument_T);

In this section the method is allocating an encode buffer, a data object for the argument for the Monitor
Stop message, and a control object for the same argument.

 tMonStopArgument_T.t = T_MonitorStopArgument_crossRefIdentifier;
 tMonStopArgument_T.u.crossRefIdentifier = ptCrossRefID;

Here the method is identifying the choice within the Monitor Stop argument that is going to be used: the
choice to specify a cross reference id. Then it populates the correct member of the choice's union with the
pointer to the cross reference id.

 int iLength = tMonStopArgument_C.Encode();
 if (iLength < 0) return -1;

Here the method is encoding the Monitor Stop argument and checking to see if the encoding worked.

 ASN1T_CSTA_ROSE_PDU tROSEHeaderEnc_T;
 ASN1C_CSTA_ROSE_PDU tROSEHeaderEnc_C(tEncodeBuffer,
tROSEHeaderEnc_T);
 ASN1T_CSTA_ROSE_PDU_invoke tInvokeObject;

Every CSTA message is wrapped within a ROSE header, so here the method is allocating the objects and
structures needed to encode the header. Note that the control object for the ROSE header is constructed
using the same encode buffer instance that was used for the control object for the Monitor Stop argument.
The same buffer is used because the ROSE header will wrap; i.e, include, the information in the Monitor
Stop argument.

 tInvokeObject.m.argumentPresent = 1;
 tInvokeObject.invokeId.t = T_InvokeId_present;
 tInvokeObject.invokeId.u.present = 1;
 tInvokeObject.opcode.t = T_Code_local;
 tInvokeObject.opcode.u.local = 73;

Here the method is populating the invoke object. The first line indicates that an argument will be present in
the ROSE header. This argument will be the encoded Monitor Stop argument.

The second line indicates that an invoke id will be present in the header. The invoke id is any number to
identify this instance of the message.that the PBX will accept.

The third line sets the invoke id to 1. The invoke id should be different for each CSTA message sent to the
PBX, though wrapping back to 1 after some maximum value will likely be necessary. In some cases the
invoke id can contain a couple of pieces of information, again depending on what the PBX will accept.

The fourth line indicates that the opcode that will be used is a local opcode; i.e., defined in the CSTA
ASN.1 specification, as opposed to a global opcode.

The fifth line sets the opcode to 73, which is the opcode for Monitor Stop.

 tInvokeObject.argument.numocts = iLength;
 tInvokeObject.argument.data = (OSOCTET *) tEncodeBuffer.getMsgPtr();

Here the method is setting the already-encoded Monitor Stop argument into the invoke object.

 tROSEHeaderEnc_T.t = T_CSTA_ROSE_PDU_invoke;
 tROSEHeaderEnc_T.u.invoke = &tInvokeObject;

Here the method “tells” the ROSE header that the operation will be an INVOKE operation and sets the
invoke object to the header.

 iLength = tROSEHeaderEnc_C.Encode();
 if (iLength < 0) return -1;

Here the method encodes the ROSE header and checks to see if the encoding worked. The encoded ROSE
header will include the bytes of the already-encoded Monitor Stop argument.

At this point the Monitor Stop argument is completely encoded. So the next step for this method is to send
the message to the PBX, using whatever mechanism is necessary (e.g., TCP/IP). We will assume that the
message has been sent and a response received. We will further assume that pachResponseFromPBX
points to the bytes of the encoded response message, and that iResponseFromPBX contains the length of
the response message.

 ASN1BERDecodeBuffer tROSEDecodeBuffer(pachResponseFromPBX,
iResponseFromPBX);
 ASN1T_CSTA_ROSE_PDU tROSEHeaderDec_T;
 ASN1C_CSTA_ROSE_PDU tROSEHeaderDec_C(tROSEDecodeBuffer,
tROSEHeaderDec_T);

Here the method is allocating some objects to decode the ROSE header of the response. The first line
allocates a decode buffer. The second line allocates a data object. And the third line allocates a control
object.

 int iStatus = tROSEHeaderDec_C.Decode();
 if (iStatus != 0) return -1;

Here the method decodes the ROSE header and checks to see if the decoding worked.

 if (tROSEHeaderDec_T.t != T_CSTA_ROSE_PDU_returnResult) return -1;
 return 0;

Here the method checks to make sure that the message is a RETURN RESULT message, which indicates a
successful operation. In this case there is no other information in the response message that's needed, so
the method then simply returns with success status.

The method could also check the invoke id of the result message at this point. The invoke id is contained
in the invokeId field of returnResult. The invoke id of a result message should be the same as the invoke id
of the original INVOKE message.

	CSTA Phase 2 C++ API Evaluation Kit for Windows
	User’s Guide
	Objective Systems, Inc. June 2019

	Introduction
	Contents of the Package
	Getting Started
	CSTA Explicit Association
	Encoding CSTA Messages with ROSE Header
	Encoding a CSTA message
	.1 Encoding a ROSE Header

	Decoding CSTA Messages
	Table 1: Operation Table for CSTA phase 2

	Common CSTA Operations
	Making a Call
	Monitoring
	Starting a Monitor
	Receiving Monitor Events
	Stopping a Monitor

