
CSTA 2 Java BER

 Encode/Decode API

User’s Guide

Objective Systems, Inc. August 2009

Introduction

The Objective Systems’ CSTA Java BER Encode/Decode API for Windows is a Single Threaded jar library
for encoding and decoding messages from the CSTA Phase 2 ASN.1 specification using the Basic
Encoding Rules (BER) as defined in ITU standard X.690.

This API has been developed in the Java programming language. The Objective Systems ASN1C compiler
was used to generate the structures and encode/decode functions. These were compiled with Java 1.5
compiler and packaged into a JAR file.

Contents of the Package

The following diagram shows the directory tree structure that comprises the Java CSTA BER
encode/decode package:

csta2fw
 |
 +- build

 |
 +- doc

 |
 +- lib

 |
 +- src

 |
 +- sample
 |
 +- specs

The contents of the package will differ if the evaluation version is installed rather than the stand-alone
package. The evaluation version should be installed on top of a current ASN1C evaluation package. The
sources and JAR file may be generated by executing make or nmake from the build directory.

The purpose and contents of the various subdirectories are as follows:

• build – Contains a makefile for building the sources and JAR file.

• doc – Contains this document.

• lib – Contains the JAR file once it has been built. The JAR file is called csta2fw.jar and contains
the CSTA phase two (ECMA-218), ROSE (ITU-T X.880 / ISO 13712-1), and ACSE (X.227 / ISO
8650) implementations.

• src – Contains the sources generated by ASN1C.

• sample – Contains a sample program to demonstrate how to use the enclosed package.

• specs – Contains the CSTA(ECMA-218), ROSE(X.880), ACSE(X.227), Information
Framework(X.501), and UsefulDefinition (X.501) ASN.1 specifications that were used in the
compilation.

Getting Started

The package is delivered as a zip file that can be installed in any directory on the development system.1 All
makefiles and internal sample programs use relative directory paths, so it is not necessary to create any type
of top-level environment variables.

All of the necessary class files have been built using Java JDK 1.5. The code can be tested by executing
the sample programs in the sample subdirectory. These sample programs consist of a reader and writer
program. The writer program populates a data variable with some data, calls an encode function, and then
writes the encoded byte stream to a file. The reader program reads this file, decodes the data into a Java
structure, and then prints the decoded results.

CSTA explicit Association
CSTA protocol operates within an application association (otherwise known as a CSTA association
or association) as provided by ISO 8649 (ACSE). This association can be either:

• an implicit association achieved via off-line agreement or
• an explicit association realized through the use of ACSE.

The initialization sequence of CSTA messages for the implicit and explicit associations is
described in the following sections.

Explicit/dynamic association can be realized by using acse.jar (ACSE ASN.1 implementation) API. An
application context is established as follow:

1) The system generates AARQ-apdu & waits for AARE-apdu from receiving System.
2) Receiving system receives the AARQ-apdu, selects the protocol version to be used by identifying

highest csta version that is common to both system. Receiving System generates AARE-apdu
using selected csta protocol version.

It is necessary for the requesting and responding systems to specify the CSTA services that they
support. As with the protocol version information, this is also achieved by carrying additional
information in the User Information field of the A-ASSOCIATE request and response PDUs. The
application association requestor shall:

• list the services required from the serving application;
• list the services it can supply.

The responder shall include similar information for the responding application. At this point the
association requestor will either accept or reject the association.

Example of ACSE connection request is available in sample/acseConnection directory.

1) application context Name - CSTA object identifier.

2) CSTA protocol version information, which is carried within the "User Information" field of the ACSE
request and response PDUs.

1 This is only true of the stand-alone version; evaluation versions should be installed in
ASN1C_INSTALL_DIR\java.

Encoding CSTA Messages with ROSE Header

The CSTA specification specifies a two-phase protocol using ROSE for the common headers. In order to
encode a message of this type, the following steps must be performed:

1. A CSTA base message type must be populated, and

2. The results must be plugged into a ROSE message structure and then this is encoded to produce the
finished message.

The user should use the writer program (writer.java) in the one of the sample directories as a guide when
reading the rest of the procedure.

1 Encoding a CSTA message

To populate a CSTA message component, a variable of one of the various CSTA class structures must first
be populated with data. These structures normally correspond to the ARGUMENT or RESULT types
specified in a CSTA2 Information Object for OPERATION class. For example, the following information
object specifies the messages that are exchanged for the makeCall operation:

makeCall OPERATION ::= {
ARGUMENT MakeCallArgument
RESULT MakeCallResult
ERRORS {universalFailure}
CODE local : 10

}

In this information object, CODE field defines the value “local:10” to identify for makeCall operation.
ARGUMENT field defines the MakeCallArgument type, which can be used as invoke the
makeCall operation. RESULT field defines the MakeCallResult type, which is the used to return the
result of the makeCall operation. ERRORS field defines the another information object, which contains
the error type can be produced in makeCall operation.

Table 1.1 is developed from the csta phase 2 information object definitions. This table contains operation
name, operation code, Argument type & Result type for this operation. To encode/invoke the operation user
will require to set the operation code value & encode the Argument type defined in this table. And to
decode the operation user will require to check the operation code value & decode the corresponding result
type or argument type. e.g For invoke the makeCall operation, user will need to set the
CSTA_ROSE_PDU_invoke.operationCode value to local:10 & encode the MakeCallArgument type
in CSTA_ROSE_PDU_invoke. Argument open type.

In this case, MakeCallArgument is encoded and sent as a request message (or invoke as it is known in
ROSE). The entity receiving this message is then required to respond with the result message of
MakeCallResult type or one of the defined errors in universalFailure information object.

The sample program shows how to encode a MakeCallArgument:

MakeCallArgument ::=
SEQUENCE
{callingDevice DeviceID,
 calledDirectoryNumber CalledDeviceID,
 extensions CSTACommonArguments OPTIONAL}

2 Encoding a ROSE Header

Once the argument is populated and encoded, the ROSE header must be added. This is a common header
that is added to all messages that support the ROSE protocol. In the case of an ROSE OPERATION, a
ROSE Invoke message must be sent to the other entity.

The ROSE header required to send an invoke message consists of 4 fields:

1. Invoke ID: this is an arbitrary identifier that acts as a “handle” for matching responses to requests
when messages are exchanged. Any result or error received in response to this invoke request will
contain this identifier value.

2. Linked ID: this is another Invoke ID that is used when a sub-operation within the existing
operation is initiated. The Linked ID is the Invoke ID of the parent (i.e. the encapsulating)
operation.

3. Operation Code: this identifies the operation to the receiving entity. Table 1.1 can be used to find
out the operation code value for particular operation. e.g. makeCall operation correspond to the
“local : 10” value.

4. Message Data : this is a open type. CSTA populated message data is placed in this open type.
Table 1.1 can be used to find out the Type for particular operation. E.g. makeCall operation
correspond to the MakeCallArgument type.

The following is a snippet from the writer.cs sample program showing how the header is added:

 /* Populate header structure */

 invoke.invokeId = new InvokeId();

 /* arbitrary number: should be unique */
 invoke.invokeId.set_present(new Asn1Integer(1));

 /* This is where we get the previously encoded message component */

 /* operation code for "makeCall" operation from Table 1.1 */
 invoke.opcode.set_local (new Asn1Integer(10));
 invoke.argument = makeCallArgument;

 pdu.set_invoke(invoke);

The header identifies the operation to be performed (opcode = 10 = makeCall) and assigned a unique
invoke identifier. This invoke identifier serves as a session ID that can be used to match requests with
respose if asynchronous communications are used. The last part of the populate logic gets the previously
encoded message component from encoding the make call argument data. This is the open type onto which
the ROSE header is pre-pended.

Decoding CSTA Messages

CSTA messages are decoded by reversing the procedure that was used to encode them. In other words, the
following two distinct decode operations must be performed. The ROSE & CSTA message will be decoded
CSTA_ROSE_PDU type decode call

This is the inverse of the encoding procedure presented earlier. The user should use the reader program
(reader.cs) in the sample directory as a guide when reading the rest of the procedure.

The procedure to decode a complete CSTA message is as follows:

1. Read an encoded message from an input stream.

2. Create an Asn1BerDecodeBuffer object to wrap the message buffer that the message was read into.

3. Create a CSTA_ROSE_PDU object and use it in conjunction with the decode buffer object created
above to decode the header.

4. The header fields can now be examined. An application will first check Invoke ID to find out the
response for different session. For our example, value of the Invoke ID field should “1”, which is
random unique number we have set during encode procedure. Than to identify the operation,
check the operation code value, which should be “local:10” for a result/error for our invoke
request.

Table 1.1: Operation Table for CSTA II

Operation name
Operation
Identifier Operation Invoke type Operation Result type

alternateCall local: 1 AlternateCallArgument AlternateCallResult
answerCall local: 2 AnswerCallArgument AnswerCallResult
callCompletion local: 3 CallCompletionArgument CallCompletionResult
clearCall local: 4 ClearCallArgument ClearCallResult
clearConnection local: 5 ClearConnectionArgument ClearConnectionResult
conferenceCall local: 6 ConferenceCallArgument ConferenceCallResult
consultationCall local: 7 ConsultationCallArgument ConsultationCallResult
divertCall local: 8 DivertCallArgument DivertCallResult
holdCall local: 9 HoldCallArgument HoldCallResult
makeCall local: 10 MakeCallArgument MakeCallResult
makePredictiveCall local: 11 MakePredictiveCallArgument MakePredictiveCallResult
queryDevice local: 12 QueryDeviceArgument QueryDeviceResult
reconnectCall local: 13 ReconnectCallArgument ReconnectCallResult
retrieveCall local: 14 RetrieveCallArgument RetrieveCallResult
setFeature local: 15 SetFeatureArgument SetFeatureResult
transferCall local: 16 TransferCallArgument TransferCallResult
associateData local: 17 AssociateDataArgument AssociateDataResult
parkCall local: 18 ParkCallArgument ParkCallResult
sendDTMFTones local: 19 SendDTMFTonesArgument SendDTMFTonesResult
singleStepConf local: 20 SingleStepConfArgument SingleStepConfResult
cSTAEventReport local: 21 CSTAEventReportArgument
routeRequest local: 31 RouteRequestArgument
reRouteRequest local: 32 ReRouteRequestArgument
routeSelectRequest local: 33 RouteSelectRequestArgument

routeUsedRequest local: 34 RouteUsedRequestArgument
routeEndRequest local: 35 RouteEndRequestArgument
singleStepTrans local: 50 SingleStepTransArgument SingleStepTransResult
escapeService local: 51 EscapeServiceArgument EscapeServiceResult
systemStatus local: 52 SystemStatusArgument SystemStatusResult
monitorStart local: 71 MonitorStartArgument MonitorStartResult
changeMonitorFilter local: 72 ChangeMonitorFilterArgument ChangeMonitorFilterResult
monitorStop local: 73 MonitorStopArgument MonitorStopResult
snapshotDevice local: 74 SnapshotDeviceArgument SnapshotDeviceResult
snapshotCall local: 75 SnapshotCallArgument SnapshotCallResult
startDataPath local: 110 StartDataPathArgument StartDataPathResult
stopDataPath local: 111 StopDataPathArgument StopDataPathResult
sendData local: 112 SendDataArgument SendDataResult
sendMulticastData local: 113 SendMulticastDataArgument SendMulticastDataResult
sendBroadcastData local: 114 SendBroadcastDataArgument SendBroadcastDataResult
suspendDataPath local: 115 SuspendDataPathArgument SuspendDataPathResult
dataPathSuspended local: 116 DataPathSuspendedArgument DataPathSuspendedResult
resumeDataPath local: 117 ResumeDataPathArgument ResumeDataPathResult
dataPathResumed local: 118 DataPathResumedArgument DataPathResumedResult
fastData local: 119 FastDataArgument FastDataResult
concatenateMessage local: 500 ConcatenateMessageArgument ConcatenateMessageResult
deleteMessage local: 501 DeleteMessageArgument DeleteMessageResult
playMessage local: 502 PlayMessageArgument PlayMessageResult
queryVoiceAttribute local: 503 QueryVoiceAttributeArgument QueryVoiceAttributeResult
reposition local: 504 RepositionArgument RepositionResult
resume local: 505 ResumeArgument ResumeResult
review local: 506 ReviewArgument ReviewResult
setVoiceAttribute local: 507 SetVoiceAttributeArgument SetVoiceAttributeResult
stop local: 508 StopArgument StopResult
suspend local: 509 SuspendArgument SuspendResult
synthesizeMessage local: 510 SynthesizeMessageArgument SynthesizeMessageResult
recordMessage local: 511 RecordMessageArgument RecordMessageResult

NOTE: For all the above Operations or Information Objects, return error type is “UniversalFailure”.

	1Encoding a CSTA message
	2Encoding a ROSE Header

